Matching Items (7)
Filtering by

Clear all filters

136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
148429-Thumbnail Image.png
Description

Extrachromosomal circular DNA (eccDNA) has been identified in a broad range of eukaryotes and have been shown to carry genes and regulatory sequences. Additionally, they can amplify within a cell by autonomous replication or reintegration into the genome, effectively influencing copy number in cells. This has significant implications for cancer,

Extrachromosomal circular DNA (eccDNA) has been identified in a broad range of eukaryotes and have been shown to carry genes and regulatory sequences. Additionally, they can amplify within a cell by autonomous replication or reintegration into the genome, effectively influencing copy number in cells. This has significant implications for cancer, where oncogenes are frequently amplified on eccDNA. However, little is known about the exact molecular mechanisms governing eccDNA functionality. To this end, we constructed a fluorescent reporter at an eccDNA-prone locus of the yeast genome, CUP1. It is our hope that this reporter will contribute to a better understanding of eccDNA formation and amplification within a cell.

ContributorsKeal, Tula Ann (Author) / Wang, Xiao (Thesis director) / Tian, Xiaojun (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
171416-Thumbnail Image.png
Description
The mutual inhibition between synthetic gene circuits and cell growth produces growth feedback in the host-circuit system. Previous studies have demonstrated that the growth feedback has an marked impact on the molecular dynamics of the host-circuit system. However, the complexity of the growth feedback effect is not fully understood. A

The mutual inhibition between synthetic gene circuits and cell growth produces growth feedback in the host-circuit system. Previous studies have demonstrated that the growth feedback has an marked impact on the molecular dynamics of the host-circuit system. However, the complexity of the growth feedback effect is not fully understood. A theoretical framework was developed to study the dynamics of the coupling between growth feedback and synthetic gene circuits. The study’s results reveal three major points about the impact of growth feedback. First, a nonlinear emergent behavior mediated by growth feedback. The unexpected behavior depends on the dynamic ribosome allocation between gene circuit expression and host cell growth. Second, the emergence and loss of unexpected qualitative states on the host-circuit system generated by ultrasensitive growth feedback. Third, the growth feedback-induced cooperativity behavior in synthetic gene modules competing for resources. In addition, growth feedback attenuated the winner-takes-all rules on resource competition between the two self-activating modules. These results demonstrate that growth feedback plays an important role in the host-circuit system’s molecular dynamics. Characterizing general principles from the effect of growth facilitates the ability to minimize or even harness unexpected gene expression behaviors derived from the effect of growth feedback.
ContributorsMelendez-Alvarez, Juan Ramon (Author) / Tian, Xiaojun (Thesis advisor) / Wang, Xiao (Committee member) / Kuang, Yang (Committee member) / Arizona State University (Publisher)
Created2022
158202-Thumbnail Image.png
Description
Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount of interacting components, tend to possess very high dimensionality. Additionally,

Complex dynamical systems are the kind of systems with many interacting components that usually have nonlinear dynamics. Those systems exist in a wide range of disciplines, such as physical, biological, and social fields. Those systems, due to a large amount of interacting components, tend to possess very high dimensionality. Additionally, due to the intrinsic nonlinear dynamics, they have tremendous rich system behavior, such as bifurcation, synchronization, chaos, solitons. To develop methods to predict and control those systems has always been a challenge and an active research area.

My research mainly concentrates on predicting and controlling tipping points (saddle-node bifurcation) in complex ecological systems, comparing linear and nonlinear control methods in complex dynamical systems. Moreover, I use advanced artificial neural networks to predict chaotic spatiotemporal dynamical systems. Complex networked systems can exhibit a tipping point (a “point of no return”) at which a total collapse occurs. Using complex mutualistic networks in ecology as a prototype class of systems, I carry out a dimension reduction process to arrive at an effective two-dimensional (2D) system with the two dynamical variables corresponding to the average pollinator and plant abundances, respectively. I demonstrate that, using 59 empirical mutualistic networks extracted from real data, our 2D model can accurately predict the occurrence of a tipping point even in the presence of stochastic disturbances. I also develop an ecologically feasible strategy to manage/control the tipping point by maintaining the abundance of a particular pollinator species at a constant level, which essentially removes the hysteresis associated with tipping points.

Besides, I also find that the nodal importance ranking for nonlinear and linear control exhibits opposite trends: for the former, large degree nodes are more important but for the latter, the importance scale is tilted towards the small-degree nodes, suggesting strongly irrelevance of linear controllability to these systems. Focusing on a class of recurrent neural networks - reservoir computing systems that have recently been exploited for model-free prediction of nonlinear dynamical systems, I uncover a surprising phenomenon: the emergence of an interval in the spectral radius of the neural network in which the prediction error is minimized.
ContributorsJiang, Junjie (Author) / Lai, Ying-Cheng (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Wang, Xiao (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2020
161972-Thumbnail Image.png
Description
Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not only provided us numerous achievements, but also brought us more

Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not only provided us numerous achievements, but also brought us more timely and underexplored problems. In SB's entire history, mathematical modeling has always been an indispensable approach to predict the experimental outcomes, improve experimental design and obtain mechanism-understanding of the biological systems. \textit{Escherichia coli} (\textit{E. coli}) is one of the most important experimental platforms, its growth dynamics is the major research objective in this dissertation. Chapter 2 employs a reaction-diffusion model to predict the \textit{E. coli} colony growth on a semi-solid agar plate under multiple controls. In that chapter, a density-dependent diffusion model with non-monotonic growth to capture the colony's non-linear growth profile is introduced. Findings of the new model to experimental data are compared and contrasted with those from other proposed models. In addition, the cross-sectional profile of the colony are computed and compared with experimental data. \textit{E. coli} colony is also used to perform spatial patterns driven by designed gene circuits. In Chapter 3, a gene circuit (MINPAC) and its corresponding pattern formation results are presented. Specifically, a series of partial differential equation (PDE) models are developed to describe the pattern formation driven by the MINPAC circuit. Model simulations of the patterns based on different experimental conditions and numerical analysis of the models to obtain a deeper understanding of the mechanisms are performed and discussed. Mathematical analysis of the simplified models, including traveling wave analysis and local stability analysis, is also presented and used to explore the control strategies of the pattern formation. The interaction between the gene circuit and the host \textit{E. coli} may be crucial and even greatly affect the experimental outcomes. Chapter 4 focuses on the growth feedback between the circuit and the host cell under different nutrient conditions. Two ordinary differential equation (ODE) models are developed to describe such feedback with nutrient variation. Preliminary results on data fitting using both two models and the model dynamical analysis are included.
ContributorsHe, Changhan (Author) / Kuang, Yang (Thesis advisor) / Wang, Xiao (Committee member) / Kostelich, Eric (Committee member) / Tian, Xiaojun (Committee member) / Gumel, Abba (Committee member) / Arizona State University (Publisher)
Created2021
132270-Thumbnail Image.png
Description
YAP/TAZ is the key effector in the Hippo pathway, but it is also involved in many other regulatory pathways to control tissue and organ size. To better understand its regulation and effects in tumorigenesis and degeneration, a preliminary feedback network was created with the species YAP/TAZ, phosphorylated YAP/TAZ, LATS, miR-130a,

YAP/TAZ is the key effector in the Hippo pathway, but it is also involved in many other regulatory pathways to control tissue and organ size. To better understand its regulation and effects in tumorigenesis and degeneration, a preliminary feedback network was created with the species YAP/TAZ, phosphorylated YAP/TAZ, LATS, miR-130a, VGLL4, and β-catenin. From this network a set of ordinary differential equations were written and analyzed for parameter effects. A model showing the healthy, tumorigenic, and degenerative states was created and preliminary parameter analysis identified the effects of parameter modifications on the overall levels of YAP/TAZ. Further analysis is required and connections with the underlying biology should continue to be pursued to better understand how parameter modifications could improve disease treatments.
ContributorsSussex, Erin Nicole (Author) / Tian, Xiaojun (Thesis director) / Wang, Xiao (Committee member) / School of International Letters and Cultures (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
168792-Thumbnail Image.png
Description
A notable challenge when assembling synthetic gene circuits is that modularity often fails to function as intended. A crucial underlying reason for this modularity failure is the existence of competition for shared and limited gene expression resources. By designing a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain

A notable challenge when assembling synthetic gene circuits is that modularity often fails to function as intended. A crucial underlying reason for this modularity failure is the existence of competition for shared and limited gene expression resources. By designing a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain with two coupled self-activation modules to achieve successive cell fate transitions, nonlinear resource competition within synthetic gene circuits is unveiled. However, in vivo it can be seen that the transition path was redirected with the activation of one switch always prevailing over that of the other, contradictory to coactivation theoretically expected. This behavior is a result of resource competition between genes and follows a ‘winner-takes-all’ rule, where the winner is determined by the relative connection strength between the two modules. Despite investigation demonstrating that resource competition between gene modules can significantly alter circuit deterministic behaviors, how resource competition contributes to gene expression noise and how this noise can be controlled is still an open issue of fundamental importance in systems biology and biological physics. By utilizing a two-gene circuit, the effects of resource competition on protein expression noise levels can be closely studied. A surprising double-edged role is discovered: the competition for these resources decreases noise while the constraint on resource availability adds its own term of noise into the system, denoted “resource competitive” noise. Noise reduction effects are then studied using orthogonal resources. Results indicate that orthogonal resources are a good strategy for eliminating the contribution of resource competition to gene expression noise. Noise propagation through a cascading circuit has been considered without resource competition. It has been noted that the noise from upstream genes can be transmitted downstream. However, resource competition’s effects on this cascading noise have yet to be studied. When studied, it is found that resource competition can induce stochastic state switching and perturb noise propagation. Orthogonal resources can remove some of the resource competitive behavior and allow for a system with less noise.
ContributorsGoetz, Hanah Elizabeth (Author) / Tian, Xiaojun (Thesis advisor) / Wang, Xiao (Committee member) / Lai, Ying-Cheng (Committee member) / Arizona State University (Publisher)
Created2022