Matching Items (120)
Filtering by

Clear all filters

136447-Thumbnail Image.png
Description
The purpose of this thesis study was to examine whether the "war on cancer" metaphor influences cancer perception and treatment decision. A total of 249 undergraduates (152 females) from a large southwestern university participated in an online survey experiment and were either randomly assigned to the control condition (N=123) or

The purpose of this thesis study was to examine whether the "war on cancer" metaphor influences cancer perception and treatment decision. A total of 249 undergraduates (152 females) from a large southwestern university participated in an online survey experiment and were either randomly assigned to the control condition (N=123) or to the war prime condition (N=126). Participants in the control condition did not receive the metaphor manipulation while participants in the war prime condition received the subtle "war on cancer" metaphor prime. After the prime was given, participants read a scenario, answered questions related to the situation, and responded to demographic questions. The results suggested that, compared to participants in the no-prime condition, participants exposed to the war metaphor were more likely to (a) view melanoma as an acute disease, (b) choose chemotherapy over molecular tests, and (c) prefer more aggressive treatment. These findings illustrated the unintended consequences of the "war on cancer" slogan. The results were encouraging and in the predicted direction, but the effect size was small. The discussion section described possible future directions for research.
ContributorsShangraw, Ann Mariah (Author) / Kwan, Virginia (Thesis director) / Neuberg, Steven (Committee member) / Cavanaugh Toft, Carolyn (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2015-05
148429-Thumbnail Image.png
Description

Extrachromosomal circular DNA (eccDNA) has been identified in a broad range of eukaryotes and have been shown to carry genes and regulatory sequences. Additionally, they can amplify within a cell by autonomous replication or reintegration into the genome, effectively influencing copy number in cells. This has significant implications for cancer,

Extrachromosomal circular DNA (eccDNA) has been identified in a broad range of eukaryotes and have been shown to carry genes and regulatory sequences. Additionally, they can amplify within a cell by autonomous replication or reintegration into the genome, effectively influencing copy number in cells. This has significant implications for cancer, where oncogenes are frequently amplified on eccDNA. However, little is known about the exact molecular mechanisms governing eccDNA functionality. To this end, we constructed a fluorescent reporter at an eccDNA-prone locus of the yeast genome, CUP1. It is our hope that this reporter will contribute to a better understanding of eccDNA formation and amplification within a cell.

ContributorsKeal, Tula Ann (Author) / Wang, Xiao (Thesis director) / Tian, Xiaojun (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148450-Thumbnail Image.png
Description

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The purpose of this thesis is to draft a protocol to study adaptive therapy in a preclinical model of breast cancer on MCF7, estrogen receptor-positive, cells that have evolved resistance to fulvestrant and palbociclib (MCF7 R). In this study, we used two protocols: drug dose adjustment and intermittent therapy. The MCF7 R cell lines were injected into the mammary fat pads of 11-month-old NOD/SCID gamma (NSG) mice (18 mice) which were then treated with gemcitabine.<br/>The results of this experiment did not provide complete information because of the short-term treatments. In addition, we saw an increase in the tumor size of a few of the treated mice, which could be due to the metabolism of the drug at that age, or because of the difference in injection times. Therefore, these adaptive therapy protocols on hormone-refractory breast cancer cell lines will be repeated on young, 6-week old mice by injecting the cell lines at the same time for all mice, which helps the results to be more consistent and accurate.

ContributorsConti, Aviona (Author) / Maley, Carlo (Thesis director) / Blattman, Joseph (Committee member) / Seyedi, Sareh (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148396-Thumbnail Image.png
Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT,

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

ContributorsBennett, Justin Klark (Author) / Kuang, Yang (Thesis director) / Kostelich, Eric (Committee member) / Phan, Tin (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148243-Thumbnail Image.png
Description

Brave Bears was a Barrett creative project that operated under local non-profit organizations, Amanda Hope Rainbow Angels and Arizona Women’s Recovery Center. Amanda Hope Rainbow Angels provides support and education for children fighting cancer and their families. Arizona Women’s Recovery Center provides rehabilitation programs for women fighting substance abuse and

Brave Bears was a Barrett creative project that operated under local non-profit organizations, Amanda Hope Rainbow Angels and Arizona Women’s Recovery Center. Amanda Hope Rainbow Angels provides support and education for children fighting cancer and their families. Arizona Women’s Recovery Center provides rehabilitation programs for women fighting substance abuse and housing for the women and their children. The Brave Bears Project was focused on helping children in these situations cope with the trauma they are experiencing. The children received a teddy bear, which is a transitional object. In addition, a clay pendant with the word, “brave” pressed into it was tied around the bear’s neck with a ribbon. A poem of explanation and encouragement was also included.<br/><br/>The teddy bear provided comfort to children experiencing emotionally distressing situations as they receive treatment for their illness or as their mom undergoes rehabilitation. This can be in the form of holding the teddy bear when they feel frightened, anxious, lonely or depressed. The “brave” pendant and poem seek to encourage them and acknowledge their trauma and ability to persevere.

ContributorsRichards, Emma Joy (Author) / Lopez, Kristina (Thesis director) / Safyer, Paige (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136345-Thumbnail Image.png
Description
The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new blood capillaries that are necessary for the survival of a

The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new blood capillaries that are necessary for the survival of a tumor, as a tumor cannot grow larger than 1-2 mm3 without developing its own blood supply. Vascular disrupting agents, such as iodocombstatin, a derivative of combretastatin, can be used to effectively cut off the blood supply to a growing neoplasm, effectively inhibiting the supply of oxygen and nutrients needed for cell division Thus, VDAs have a very important implication in terms of the future of chemotherapy. A prodrug, defined as an agent that is inactive in the body until metabolized to yield the drug itself, was synthesized by combining iodocombstatin with a β-glucuronide linker. The prodrug is theoretically hydrolyzed in the body to afford the active drug by β-glucuronidase, an enzyme that is produced five times as much by cancer cells as by normal cells. This effectively creates a “magic-bullet” form of chemotherapy, known as Direct Enzyme Prodrug Therapy (DEPT).
ContributorsClark, Caroline Marie (Author) / Pettit, George Robert (Thesis director) / Melody, Noeleen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
131069-Thumbnail Image.png
Description
Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however,

Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however, it can be difficult to find and learn about the which tool is optimal for use in a certain experiment. This thesis aims to comprehensively review four tools, Cytoscape, PaxtoolsR, PathOlogist, and Reactome, and their role in pathway analysis. This is done by applying a known microarray data set to each tool and testing their different functions. The functions of these programs will then be analyzed to determine their roles in learning about biology and assisting new researchers with their experiments. It was found that each tools holds a very unique and important role in pathway analysis. Visualization pathways have the role of exploring individual pathways and interpreting genomic results. Quantification pathways use statistical tests to determine pathway significance. Together one can find pathways of interest and then explore areas of interest.
ContributorsRehling, Thomas Evan (Author) / Buetow, Kenneth (Thesis director) / Wilson, Melissa (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131295-Thumbnail Image.png
Description
A major challenge with tissue samples used for biopsies is the inability to monitor their molecular quality before diagnostic testing. When tissue is resected from a patient, the cells are removed from their blood supply and normal temperature-controlled environment, which causes significant biological stress. As a result, the molecular composition

A major challenge with tissue samples used for biopsies is the inability to monitor their molecular quality before diagnostic testing. When tissue is resected from a patient, the cells are removed from their blood supply and normal temperature-controlled environment, which causes significant biological stress. As a result, the molecular composition and integrity undergo significant change. Currently, there is no method to track the effects of these artefactual stresses on the sample tissue to determine any deviations from the actual patient physiology. Without a way to track these changes, pathologists have to blindly trust that the tissue samples they are given are of high quality and fit for molecular analysis; physicians use the analysis to make diagnoses and treatment plans based on the assumption that the samples are valid. A possible way to track the quality of the tissue is by measuring volatile organic compounds (VOCs) released from the samples. VOCs are carbon-based chemicals with high vapor pressure at room temperature. There are over 1,800 known VOCs within humans and a number of these exist in every tissue sample. They are individualized and often indicative of a person’s metabolic condition. For this reason, VOCs are often used for diagnostic purposes. Their usefulness in diagnostics, reflectiveness of a person’s metabolic state, and accessibility lends them to being beneficial for tracking degradation. We hypothesize that there is a relationship between the change in concentration of the volatile organic compounds of a sample, and the molecular quality of a sample. This relationship is what would indicate the accuracy of the tissue quality used for a biopsy in relation to the tissue within the body.
ContributorsSharma, Nandini (Co-author) / Fragoso, Claudia (Co-author) / Grenier, Tyler (Co-author) / Hanson, Abigail (Co-author) / Compton, Carolyn (Thesis director) / Tao, Nongjian (Committee member) / Moakley, George (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132487-Thumbnail Image.png
Description
Fusion protein immunotherapies such as the bispecific T cell engager (BiTE) have displayed promising potential as cancer treatments capable of engaging the immune system against tumor cells. It has been shown that chlorotoxin, a 36-amino peptide found in the venom of the deathstalker scorpion (Leiurus quinquestriatus), binds specifically to glioblastoma

Fusion protein immunotherapies such as the bispecific T cell engager (BiTE) have displayed promising potential as cancer treatments capable of engaging the immune system against tumor cells. It has been shown that chlorotoxin, a 36-amino peptide found in the venom of the deathstalker scorpion (Leiurus quinquestriatus), binds specifically to glioblastoma (GBM) cells without binding healthy tissue, making it an ideal GBM cell binding moiety for a BiTE-like molecule. However, chlorotoxin’s four disulfide bonds pose a folding challenge outside of its natural context and impede production of the recombinant protein in various expression systems, including those relying on bacteria and plants. To overcome this difficulty, we have engineered a truncated chlorotoxin variant (Cltx∆15) that contains just two of the original eight cystine residues, thereby capable of forming only a single disulfide bond while maintaining its ability to bind GBM cells. We further created a BiTE (ACDClx∆15) which tethers Cltx∆15 to a single chain ⍺-CD3 antibody in order to bring T cells into contact with GBM cells. The gene for ACDClx∆15 was cloned into a pET-11a vector for expression in Escherichia coli and isolated from inclusion bodies before purification via affinity chromatography. Immunoblot analyses confirmed that ACDClx∆15 can be expressed in E. coli and purified with high yield and purity; moreover, flow cytometry indicated that ACDClx∆15 is capable of binding GBM cells. These data warrant further investigation into the ability of ACDClx∆15 to activate T cells against GBM cells.
ContributorsSchaefer, Braeden Scott (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Cook, Rebecca (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132490-Thumbnail Image.png
Description
Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most common form of treatment is chemotherapy followed by radiation, which is insufficient to cure stage four cancers[3]. Salmonella enteric has

Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most common form of treatment is chemotherapy followed by radiation, which is insufficient to cure stage four cancers[3]. Salmonella enteric has long been shown to have inherent tumor targeting properties and have been able to penetrate and exist in all aspects of the tumor environment, something that chemotherapy is unable to achieve. This lab has developed a genetically modified Salmonella typhimurium (GMS) which is able to deliver DNA vaccines or synthesized proteins directly to tumor sites. These GMS strains have been used to deliver human TNF-related apoptosis inducing ligand (TRAIL) protein directly to tumor sites, but expression level was limited. It is the hope of the experiment that codon optimization of TRAIL to S. typhimurium preferred codons will lead to increased TRAIL expression in the GMS. For preliminary studies, BALB/c mice were subcutaneously challenged with CT-26 murine colorectal cancer cells and treated with an intra-tumor injection with either PBS, strain GMS + PCMV FasL (P2), or strain GMS + Pmus FasL). APC/CDX2 mutant mice were also induced to develop human colon polyps and treated with either PBS, strain GMS + vector (P1), P2, or P3. The BALB/c mouse showed statistically significant levels of decreased tumor size in groups treated with P2 or P3. The APC/CDX2 mouse study showed statistically significant levels of decreased colon polyp numbers in groups treated with P3, as expected, but was not significantly significant for groups treated with P1 and P2. In addition, TRAIL was codon optimized for robust synthesis in Salmonella. The construct will be characterized and evaluated in vitro and in vivo. Hopefully, the therapeutic effect of codon optimized TRAIL will be maximal while almost completely minimizing any unintended side effects.
ContributorsCrawford, Courtney Rose (Co-author) / Crawford, Courtney (Co-author) / Kong, Wei (Thesis director) / Shi, Yixin (Committee member) / Fu, Lingchen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05