Matching Items (176)
Filtering by

Clear all filters

152071-Thumbnail Image.png
Description
The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into

The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into artificial hands in order to enhance grasp stability and reduce the cognitive burden on the user. To this end, three studies were conducted to understand how human hands respond, passively and actively, to unexpected perturbations of a grasped object along and about different axes relative to the hand. The first study investigated the effect of magnitude, direction, and axis of rotation on precision grip responses to unexpected rotational perturbations of a grasped object. A robust "catch-up response" (a rapid, pulse-like increase in grip force rate previously reported only for translational perturbations) was observed whose strength scaled with the axis of rotation. Using two haptic robots, we then investigated the effects of grip surface friction, axis, and direction of perturbation on precision grip responses for unexpected translational and rotational perturbations for three different hand-centric axes. A robust catch-up response was observed for all axes and directions for both translational and rotational perturbations. Grip surface friction had no effect on the stereotypical catch-up response. Finally, we characterized the passive properties of the precision grip-object system via robot-imposed impulse perturbations. The hand-centric axis associated with the greatest translational stiffness was different than that for rotational stiffness. This work expands our understanding of the passive and active features of precision grip, a hallmark of human dexterous manipulation. Biological insights such as these could be used to enhance the functionality of artificial hands and the quality of life for upper extremity amputees.
ContributorsDe Gregorio, Michael (Author) / Santos, Veronica J. (Thesis advisor) / Artemiadis, Panagiotis K. (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Helms Tillery, Stephen I. (Committee member) / Arizona State University (Publisher)
Created2013
156349-Thumbnail Image.png
Description
In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down

In this work, different methods for fabrication of flexible sensors and sensor characterization are studied. Using materials and equipment that is unconventional, it is shown that different processes can be used to create sensors that behave like commercially available sensors. The reason unconventional methods are used is to cut down on cost to produce the sensors as well as enabling the manufacture of custom sensors in different sizes and different configurations. Currently commercially available sensors are expensive and are usually designed for very specific applications. By creating these same types of sensors using new methods and materials, these new sensors will show that flexible sensor creation for many uses at a fraction of the cost is achievable.
ContributorsCasanova, Lucas Montgomery (Author) / Redkar, Sangram (Thesis advisor) / Rogers, Bradley (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2018
155947-Thumbnail Image.png
Description
In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has

In this work, different passive prosthetic ankles are studied. It is observed that complicated designs increase the cost of production, but simple designs have limited functionality. A new design for a passive prosthetic ankle is presented that is simple to manufacture while having superior functionality. This prosthetic ankle design has two springs: one mimicking Achilles tendon and the other mimicking Anterior-Tibialis tendon. The dynamics of the prosthetic ankle is discussed and simulated using Working model 2D. The simulation results are used to optimize the springs stiffness. Two experiments are conducted using the developed ankle to verify the simulation It is found that this novel ankle design is better than Solid Ankle Cushioned Heel (SACH) foot. The experimental data is used to find the tendon and muscle activation forces of the subject wearing the prosthesis using OpenSim. A conclusion is included along with suggested future work.
ContributorsBhat, Sandesh Ganapati (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Lee, Hyuglae (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2017
156763-Thumbnail Image.png
Description
Geometrical tolerances define allowable manufacturing variations in the features of mechanical parts. For a given feature (planar face, cylindrical hole) the variations may be modeled with a T-Map, a hyper solid in 6D small displacement coordinate space. A general method for constructing T-Maps is to decompose a feature into points,

Geometrical tolerances define allowable manufacturing variations in the features of mechanical parts. For a given feature (planar face, cylindrical hole) the variations may be modeled with a T-Map, a hyper solid in 6D small displacement coordinate space. A general method for constructing T-Maps is to decompose a feature into points, identify the variational limits to these points allowed by the feature tolerance zone, represent these limits using linear halfspaces, transform these to the central local reference frame and intersect these to form the T-Map for the entire feature. The method is explained and validated for existing T-Map models. The method is further used to model manufacturing variations for the positions of axes in patterns of cylindrical features.

When parts are assembled together, feature level manufacturing variations accumulate (stack up) to cause variations in one or more critical dimensions, e.g. one or more clearances. When the T-Maps model is applied to complex assemblies it is possible to obtain as many as six dimensional stack up relation, instead of the one or two typical of 1D or 2D charts. The sensitivity of the critical assembly dimension to the manufacturing variations at each feature can be evaluated by fitting a functional T-Map over a kinematically transformed T-Map of the feature. By considering individual features and the tolerance specifications, one by one, the sensitivity of each tolerance on variations of a critical assembly level dimension can be evaluated. The sum of products of tolerance values and respective sensitivities gives value of worst case functional variation. The same sensitivity equation can be used for statistical tolerance analysis by fitting a Gaussian normal distribution function to each tolerance range and forming an equation of variances from all the contributors. The method for evaluating sensitivities and variances for each contributing feature is explained with engineering examples.

The overall objective of this research is to develop method for automation friendly and efficient T-Map generation and statistical tolerance analysis.
ContributorsChitale, Aniket (Author) / Davidson, Joseph (Thesis advisor) / Sugar, Thomas (Thesis advisor) / Shah, Jami (Committee member) / Arizona State University (Publisher)
Created2018
133887-Thumbnail Image.png
Description
This thesis evaluates the viability of an original design for a cost-effective wheel-mounted dynamometer for road vehicles. The goal is to show whether or not a device that generates torque and horsepower curves by processing accelerometer data collected at the edge of a wheel can yield results that are comparable

This thesis evaluates the viability of an original design for a cost-effective wheel-mounted dynamometer for road vehicles. The goal is to show whether or not a device that generates torque and horsepower curves by processing accelerometer data collected at the edge of a wheel can yield results that are comparable to results obtained using a conventional chassis dynamometer. Torque curves were generated via the experimental method under a variety of circumstances and also obtained professionally by a precision engine testing company. Metrics were created to measure the precision of the experimental device's ability to consistently generate torque curves and also to compare the similarity of these curves to the professionally obtained torque curves. The results revealed that although the test device does not quite provide the same level of precision as the professional chassis dynamometer, it does create torque curves that closely resemble the chassis dynamometer torque curves and exhibit a consistency between trials comparable to the professional results, even on rough road surfaces. The results suggest that the test device provides enough accuracy and precision to satisfy the needs of most consumers interested in measuring their vehicle's engine performance but probably lacks the level of accuracy and precision needed to appeal to professionals.
ContributorsKing, Michael (Author) / Ren, Yi (Thesis director) / Spanias, Andreas (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133913-Thumbnail Image.png
Description
This research project will test the structural properties of a 3D printed origami inspired structure and compare them with a standard honeycomb structure. The models have equal face areas, model heights, and overall volume but wall thicknesses will be different. Stress-deformation curves were developed from static loading testing. The area

This research project will test the structural properties of a 3D printed origami inspired structure and compare them with a standard honeycomb structure. The models have equal face areas, model heights, and overall volume but wall thicknesses will be different. Stress-deformation curves were developed from static loading testing. The area under these curves was used to calculate the toughness of the structures. These curves were analyzed to see which structures take more load and which deform more before fracture. Furthermore, graphs of the Stress-Strain plots were produced. Using 3-D printed parts in tough resin printed with a Stereolithography (SLA) printer, the origami inspired structure withstood a larger load, produced a larger toughness and deformed more before failure than the equivalent honeycomb structure.
ContributorsMcGregor, Alexander (Author) / Jiang, Hanqing (Thesis director) / Kingsbury, Dallas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134152-Thumbnail Image.png
Description
Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of

Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of linkage disequilibrium and the persistence of deleterious mutations. This has led to an increased susceptibility to a multitude of diseases, including cancer. To study the effects of artificial selection and life history characteristics on the risk of cancer mortality, we collected cancer mortality data from four studies as well as the percent of heterozygosity, body size, lifespan and breed group for 201 dog breeds. We also collected specific types of cancer breeds were susceptible to and compared the dog cancer mortality patterns to the patterns observed in other mammals. We found a relationship between cancer mortality rate and heterozygosity, body size, lifespan as well as breed group. Higher levels of heterozygosity were also associated with longer lifespan. These results indicate larger breeds, such as Irish Water Spaniels, Flat-coated Retrievers and Bernese Mountain Dogs, are more susceptible to cancer, with lower heterozygosity and lifespan. These breeds are also more susceptible to sarcomas, as opposed to carcinomas in smaller breeds, such as Miniature Pinschers, Chihuahuas, and Pekingese. Other mammals show that larger and long-lived animals have decreased cancer mortality, however, within dog breeds, the opposite relationship is observed. These relationships could be due to the trade-off between cellular maintenance and growing fast and large, with higher expression of growth factors, such as IGF-1. This study further demonstrates the relationships between cancer mortality, heterozygosity, and life history traits and exhibits dogs as an important model organism for understanding the relationship between genetics and health.
ContributorsBalsley, Cassandra Sierra (Author) / Maley, Carlo (Thesis director) / Wynne, Clive (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135584-Thumbnail Image.png
Description
Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develo

Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develop alternative therapies to treat cancer. One such alternative therapy is a peptide-based therapeutic cancer vaccine. Therapeutic cancer vaccines enhance an individual's immune response to a specific tumor. They are capable of doing this through artificial activation of tumor specific CTLs (Cytotoxic T Lymphocytes). However, in order to artificially activate tumor specific CTLs, a patient must be treated with immunogenic epitopes derived from their specific cancer type. We have identified that the tumor associated antigen, TPD52, is an ideal target for a therapeutic cancer vaccine. This designation was due to the overexpression of TPD52 in a variety of different cancer types. In order to start the development of a therapeutic cancer vaccine for TPD52-related cancers, we have devised a two-step strategy. First, we plan to create a list of potential TPD52 epitopes by using epitope binding and processing prediction tools. Second, we plan to attempt to experimentally identify MHC class I TPD52 epitopes in vitro. We identified 942 potential 9 and 10 amino acid epitopes for the HLAs A1, A2, A3, A11, A24, B07, B27, B35, B44. These epitopes were predicted by using a combination of 3 binding prediction tools and 2 processing prediction tools. From these 942 potential epitopes, we selected the top 50 epitopes ranked by a combination of binding and processing scores. Due to the promiscuity of some predicted epitopes for multiple HLAs, we ordered 38 synthetic epitopes from the list of the top 50 epitope. We also performed a frequency analysis of the TPD52 protein sequence and identified 3 high volume regions of high epitope production. After the epitope predictions were completed, we proceeded to attempt to experimentally detected presented TPD52 epitopes. First, we successful transduced parental K562 cells with TPD52. After transduction, we started the optimization process for the immunoprecipitation protocol. The optimization of the immunoprecipitation protocol proved to be more difficult than originally believed and was the main reason that we were unable to progress past the transduction of the parental cells. However, we believe that we have identified the issues and will be able to complete the experiment in the coming months.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135193-Thumbnail Image.png
Description
This purpose of this thesis study was to examine variables of the "War on Cancer" frame, loss-gain prime, and patient gender on treatment decision for advanced cancer patients. A total of 291 participants (141 females) participated in an online survey experiment and were randomly assigned to one of eight possible

This purpose of this thesis study was to examine variables of the "War on Cancer" frame, loss-gain prime, and patient gender on treatment decision for advanced cancer patients. A total of 291 participants (141 females) participated in an online survey experiment and were randomly assigned to one of eight possible conditions, each of which were comprised of a combination of one of two levels for three total independent variables: war frame ("War on Cancer" frame or neutral frame), loss-gain prime (loss prime or gain prime), and patient gender (female or male). Each of the three variables were operationalized to determine whether or not the exposure to the war on cancer paradigm, loss-frame language, or male patient gender would increase the likelihood of a participant choosing a more aggressive cancer treatment. Participants read a patient scenario and were asked to respond to questions related to motivating factors. Participants were then asked to report preference for one of two treatment decisions. Participants were then asked to provide brief demographic information in addition to responding to questions about military history, war attitudes, and cancer history. The aforementioned manipulations sought to determine whether exposure to various factors would make a substantive difference in final treatment decision. Contrary to the predicted results, participants in the war frame condition (M = 3.85, SD = 1.48) were more likely to choose the pursuit of palliative care (as opposed to aggressive treatment) than participants in the neutral frame condition (M = 3.54, SD = 1.23). Ultimately, these significant findings suggest that there is practical information to be gained from treatment presentation manipulations. By arming healthcare providers with a more pointed understanding of the nuances of treatment presentation, we can hope to empower patients, their loved ones, and healthcare providers entrenched in the world of cancer treatment.
ContributorsKnowles, Madelyn Ann (Author) / Kwan, Virginia S. Y. (Thesis director) / Presson, Clark (Committee member) / Salamone, Damien (Committee member) / Department of Psychology (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134305-Thumbnail Image.png
Description
Since Metastatic Osteosarcoma is unresponsive to most of the current standards of care currently available, and yields a survival rate of 20%, it is pertinent that novel approaches to treating it be undertaken in scientific research. Past studies in our lab have used a The Immune Blockade Therapy, utilizing α-CTLA-4

Since Metastatic Osteosarcoma is unresponsive to most of the current standards of care currently available, and yields a survival rate of 20%, it is pertinent that novel approaches to treating it be undertaken in scientific research. Past studies in our lab have used a The Immune Blockade Therapy, utilizing α-CTLA-4 and α-PD-L1 to treat mice with metastatic osteosarcoma; this resulted in 60% of mice achieving disease-free survival and protective immunity against metastatic osteosarcoma. 12 We originally wanted to see if the survival rate could be boosted by pairing the immune blockade therapy with another current, standard of care, radiation. We had found that there were certain, key features to experimental design that had to be maintained and explored further in order to raise survival rates, ultimately with the goal of reestablishing the 60% survival rate seen in mice treated with the immune blockade therapy. Our results show that mice with mature immune systems, which develop by 6-8 weeks, should be used in experiments testing an immune blockade, or other forms of immunotherapy, as they are capable of properly responding to treatment. Treatment as early as one day after should be maintained in future experiments looking at the immune blockade therapy for the treatment of metastatic osteosarcoma in mice. The immune blockade therapy, using α-PD-L1 and α-CTLA-4, seems to work synergistically with radiation, a current standard of care. The combination of these therapies could potentially boost the 60% survival rate, as previously seen in mice treated with α-PD-L1 and α-CTLA-4, to a higher percent by means of reducing tumor burden and prolonging length of life in metastatic osteosarcoma.
ContributorsLabban, Nicole (Author) / Blattman, Joseph (Thesis director) / Appel, Nicole (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05