Matching Items (10)
Filtering by

Clear all filters

135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133171-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic

Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic brain tumors, this thesis analyzes the volume measurements of the tumor sizes from the BNI data and attempts to explain such size distributions through mathematical models. More specifically, a basic stochastic cellular automaton model is used and has three-dimensional results that show similar size distributions of those of the BNI data. Results of the models are investigated using the likelihood ratio test suggesting that, when the tumor volumes are measured based on assuming tumor sphericity, the tumor size distributions significantly mimic the power law over an exponential distribution.
ContributorsFreed, Rebecca (Co-author) / Snopko, Morgan (Co-author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / WPC Graduate Programs (Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
136857-Thumbnail Image.png
Description
Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique

Glioblastoma Multiforme (GBM) is an aggressive and deadly form of brain cancer with a median survival time of about a year with treatment. Due to the aggressive nature of these tumors and the tendency of gliomas to follow white matter tracks in the brain, each tumor mass has a unique growth pattern. Consequently it is difficult for neurosurgeons to anticipate where the tumor will spread in the brain, making treatment planning difficult. Archival patient data including MRI scans depicting the progress of tumors have been helpful in developing a model to predict Glioblastoma proliferation, but limited scans per patient make the tumor growth rate difficult to determine. Furthermore, patient treatment between scan points can significantly compound the challenge of accurately predicting the tumor growth. A partnership with Barrow Neurological Institute has allowed murine studies to be conducted in order to closely observe tumor growth and potentially improve the current model to more closely resemble intermittent stages of GBM growth without treatment effects.
ContributorsSnyder, Lena Haley (Author) / Kostelich, Eric (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134774-Thumbnail Image.png
Description
Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were:

Through a standpoint feminist perspective (Harding 2009) I conducted a situational analysis (Clarke, 2015) that examined academic literature and cancer support discussion boards (DBs) to identify how Western biomedicine, specifically oncology, can integrate complementary and alternative medicine (CAM) to improve cancer treatment in children. The aims of this project were: 1) to identify the CAM treatments that are being used to alleviate the side effects from oncological treatments and/or treat pediatric cancers; 2) to compare the subjective experience of CAM to Western biomedicine of cancer patients who leave comments on Group Loop, Cancer Compass and Cancer Forums, which are online support groups (N=20). I used grounded theory and situational mapping to analyze discussion threads. The participants identified using the following CAM treatments: herbs, imagery, prayer, stinging nettle, meditation, mind-body therapies and supplements. The participants turned to CAM treatments when their cancer was late-stage or terminal, often as an integrative and not exclusively to treat their cancer. CAM was more "effective" than biomedical oncology treatment at improving their overall quality of life and functionality. We found that youth on discussion boards did not discuss CAM treatments like the adult participants, but all participants visited these sites for support and verification of their cancer treatments. My main integration recommendation is to combine mind-body CAM therapies with biomedical treatment. This project fills the gap in literature that ignores the ideas of vulnerable populations by providing the experiences of adult and pediatric cancer patients, and that of their families. It is applicable to areas of the social studies of medicine, patient care, and families suffering from cancer. KEYWORDS: Cancer; Complementary and Alternative Medicine; Situational Analysis; Standpoint Feminism
ContributorsEsposito, Sydney Maria (Author) / Martinez, Airín (Thesis director) / Hruschka, Daniel (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134943-Thumbnail Image.png
Description
Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given

Prostate cancer is the second most common kind of cancer in men. Fortunately, it has a 99% survival rate. To achieve such a survival rate, a variety of aggressive therapies are used to treat prostate cancers that are caught early. Androgen deprivation therapy (ADT) is a therapy that is given in cycles to patients. This study attempted to analyze what factors in a group of 79 patients caused them to stick with or discontinue the treatment. This was done using naïve Bayes classification, a machine-learning algorithm. The usage of this algorithm identified high testosterone as an indicator of a patient persevering with the treatment, but failed to produce statistically significant high rates of prediction.
ContributorsMillea, Timothy Michael (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135041-Thumbnail Image.png
Description
The advent of big data analytics tools and frameworks has allowed for a plethora of new approaches to research and analysis, making data sets that were previously too large or complex more accessible and providing methods to collect, store, and investigate non-traditional data. These tools are starting to be applied

The advent of big data analytics tools and frameworks has allowed for a plethora of new approaches to research and analysis, making data sets that were previously too large or complex more accessible and providing methods to collect, store, and investigate non-traditional data. These tools are starting to be applied in more creative ways, and are being used to improve upon traditional computation methods through distributed computing. Statistical analysis of expression quantitative trait loci (eQTL) data has classically been performed using the open source tool PLINK - which runs on high performance computing (HPC) systems. However, progress has been made in running the statistical analysis in the ecosystem of the big data framework Hadoop, resulting in decreased run time, reduced storage footprint, reduced job micromanagement and increased data accessibility. Now that the data can be more readily manipulated, analyzed and accessed, there are opportunities to use the modularity and power of Hadoop to further process the data. This project focuses on adding a component to the data pipeline that will perform graph analysis on the data. This will provide more insight into the relation between various genetic differences in individuals with breast cancer, and the resulting variation - if any - in gene expression. Further, the investigation will look to see if there is anything to be garnered from a perspective shift; applying tools used in classical networking contexts (such as the Internet) to genetically derived networks.
ContributorsRandall, Jacob Christopher (Author) / Buetow, Kenneth (Thesis director) / Meuth, Ryan (Committee member) / Almalih, Sara (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135515-Thumbnail Image.png
Description
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has been shown to have genetic factors that contribute to cancer susceptibility. These genetic factors can be studied using Genome-Wide association studies (GWAS), which allow for the assessment of associations between specific biologic markers. Through GWAS, associations can

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and has been shown to have genetic factors that contribute to cancer susceptibility. These genetic factors can be studied using Genome-Wide association studies (GWAS), which allow for the assessment of associations between specific biologic markers. Through GWAS, associations can be analyzed to identify genetic components that contribute to the onset of HCC. This study uses an extended version of Pathways of Distinction analysis (PoDA) to identify the subset of SNPs within the Antigen Presentation and Processing Pathway that distinguish cases from controls. Further analysis was performed to explore SNP-SNP association differences between HCC cases and controls using R-squared values and p-values. Three SNPs show significant inter-SNP associations in both HCC cases and controls. Additionally, 4 SNPs showed significant SNP-SNP associations exclusively in the control data set, possibly suggesting that control pathways have a greater degree of genetic regulation and robustness that is lost in carcinogenesis. This result suggests that these SNP associations may contribute to HCC susceptibility.
ContributorsAghili, Ardesher Joshua (Author) / Buetow, Kenneth (Thesis director) / Wilson Sayres, Melissa (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148396-Thumbnail Image.png
Description

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT,

Over time, tumor treatment resistance inadvertently develops when androgen de-privation therapy (ADT) is applied to metastasized prostate cancer (PCa). To combat tumor resistance, while reducing the harsh side effects of hormone therapy, the clinician may opt to cyclically alternates the patient’s treatment on and off. This method,known as intermittent ADT, is an alternative to continuous ADT that improves the patient’s quality of life while testosterone levels recover between cycles. In this paper,we explore the response of intermittent ADT to metastasized prostate cancer by employing a previously clinical data validated mathematical model to new clinical data from patients undergoing Abiraterone therapy. This cell quota model, a system of ordinary differential equations constructed using Droop’s nutrient limiting theory, assumes the tumor comprises of castration-sensitive (CS) and castration-resistant (CR)cancer sub-populations. The two sub-populations rely on varying levels of intracellular androgen for growth, death and transformation. Due to the complexity of the model,we carry out sensitivity analyses to study the effect of certain parameters on their outputs, and to increase the identifiability of each patient’s unique parameter set. The model’s forecasting results show consistent accuracy for patients with sufficient data,which means the model could give useful information in practice, especially to decide whether an additional round of treatment would be effective.

ContributorsBennett, Justin Klark (Author) / Kuang, Yang (Thesis director) / Kostelich, Eric (Committee member) / Phan, Tin (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132350-Thumbnail Image.png
Description
Cancer is a disease in which abnormal cells divide uncontrollably and destroy body tissue, and currently plagues today’s world. Carcinomas are cancers derived from epithelial cells and include breast and prostate cancer. Breast cancer is a type of carcinoma that forms in breast tissue cells. The tumor cells can be

Cancer is a disease in which abnormal cells divide uncontrollably and destroy body tissue, and currently plagues today’s world. Carcinomas are cancers derived from epithelial cells and include breast and prostate cancer. Breast cancer is a type of carcinoma that forms in breast tissue cells. The tumor cells can be further categorized after testing the cells for the presence of certain molecules. Hormone receptor positive breast cancer includes the tumor cells with receptors that respond to the steroid hormones, estrogen and progesterone, or the peptide hormone, HER2. These forms of cancer respond well to chemotherapy and endocrine therapy. On the other hand, triple negative breast cancer (TNBC) is characterized by the lack of hormone receptor expression and tends to have a worse prognosis in women. Prostate cancer forms in the cells of the prostate gland and has been attributed to mutations in androgen receptor ligand specificity. In a subset of triple negative breast cancer, genetic expression profiling has found a luminal androgen receptor that is dependent on androgen signaling. TNBC has also been found to respond well to enzalutamide, a an androgen receptor inhibitor. As the gene of the androgen receptor, AR, is located on the X chromosome and expressed in a variety of tissues, the responsiveness of TNBC to androgen receptor inhibition could be due to the differential usage of isoforms - different gene mRNA transcripts that produce different proteins. Thus, this study analyzed differential gene expression and differential isoform usage between TNBC cancers – that do and do not express the androgen receptor – and prostate cancer in order to better understand the underlying mechanism behind the effectiveness of androgen receptor inhibition in TNBC. Through the analysis of differential gene expression between the TNBC AR+ and AR- conditions, it was found that seven genes are significantly differentially expressed between the two types of tissues. Genes of significance are AR and EN1, which was found to be a potential prognostic marker in a subtype of TNBC. While some genes are differentially expressed between the TNBC AR+ and AR- tissues, the differences in isoform expression between the two tissues do not reflect the difference in gene expression. We discovered 11 genes that exhibited significant isoform switching between AR+ and AR- TNBC and have been found to contribute to cancer characteristics. The genes CLIC1 and RGS5 have been found to help the rapid, uncontrolled growth of cancer cells. HSD11B2, IRAK1, and COL1Al have been found to contribute to general cancer characteristics and metastasis in breast cancer. PSMA7 has been found to play a role in androgen receptor activation. Finally, SIDT1 and GLYATL1 are both associated with breast and prostate cancers. Overall, through the analysis of differential isoform usage between AR+ and AR- samples, we uncovered differences that were not detected by a gene level differential expression analysis. Thus, future work will focus on analyzing differential gene and isoform expression across all types of breast cancer and prostate cancer to better understand the responsiveness of TNBC to androgen receptor inhibition.
ContributorsDeshpande, Anagha J (Author) / Wilson-Sayres, Melissa (Thesis director) / Buetow, Kenneth (Committee member) / Natri, Heini (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131069-Thumbnail Image.png
Description
Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however,

Pathway analysis helps researchers gain insight into the biology behind gene expression-based data. By applying this data to known biological pathways, we can learn about mutations or other changes in cellular function, such as those seen in cancer. There are many tools that can be used to analyze pathways; however, it can be difficult to find and learn about the which tool is optimal for use in a certain experiment. This thesis aims to comprehensively review four tools, Cytoscape, PaxtoolsR, PathOlogist, and Reactome, and their role in pathway analysis. This is done by applying a known microarray data set to each tool and testing their different functions. The functions of these programs will then be analyzed to determine their roles in learning about biology and assisting new researchers with their experiments. It was found that each tools holds a very unique and important role in pathway analysis. Visualization pathways have the role of exploring individual pathways and interpreting genomic results. Quantification pathways use statistical tests to determine pathway significance. Together one can find pathways of interest and then explore areas of interest.
ContributorsRehling, Thomas Evan (Author) / Buetow, Kenneth (Thesis director) / Wilson, Melissa (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05