Matching Items (275)
Filtering by

Clear all filters

136446-Thumbnail Image.png
Description
Over the past several years, there has been growing concern regarding concussions and traumatic brain injuries (TBIs) in all levels of sports. A concussion is a traumatic brain injury that occurs from a blow to the head. When a concussion occurs, the brain knocks against the walls of the skull.

Over the past several years, there has been growing concern regarding concussions and traumatic brain injuries (TBIs) in all levels of sports. A concussion is a traumatic brain injury that occurs from a blow to the head. When a concussion occurs, the brain knocks against the walls of the skull. A concussion causes temporary loss of brain function leading to cognitive, physical, and emotional symptoms, such as confusion, vomiting,headache, nausea,depression, disturbed sleep, moodiness, and amnesia. Although the short-term effects of concussions are limited, the long-term effects of concussions, if untreated, can be devastating and even life-threatening. Concussions are having detrimental ramifications on society and it is important to know what these ramifications are. Concussions are a common occurrence in traditional physical sports such as soccer, basketball, and football. However, due to the violent nature of football (American football), concussions are more prevalent and the effects are more severe. Changes to rules and equipment, specifically helmets, have been made to reduce head impacts in football but there is not currently enough evidence to conclude that they significantly lessen the frequency and severity of concussions.
ContributorsLaughlin, Riley James (Author) / Squires, Kyle (Thesis director) / Shrake, Scott (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136447-Thumbnail Image.png
Description
The purpose of this thesis study was to examine whether the "war on cancer" metaphor influences cancer perception and treatment decision. A total of 249 undergraduates (152 females) from a large southwestern university participated in an online survey experiment and were either randomly assigned to the control condition (N=123) or

The purpose of this thesis study was to examine whether the "war on cancer" metaphor influences cancer perception and treatment decision. A total of 249 undergraduates (152 females) from a large southwestern university participated in an online survey experiment and were either randomly assigned to the control condition (N=123) or to the war prime condition (N=126). Participants in the control condition did not receive the metaphor manipulation while participants in the war prime condition received the subtle "war on cancer" metaphor prime. After the prime was given, participants read a scenario, answered questions related to the situation, and responded to demographic questions. The results suggested that, compared to participants in the no-prime condition, participants exposed to the war metaphor were more likely to (a) view melanoma as an acute disease, (b) choose chemotherapy over molecular tests, and (c) prefer more aggressive treatment. These findings illustrated the unintended consequences of the "war on cancer" slogan. The results were encouraging and in the predicted direction, but the effect size was small. The discussion section described possible future directions for research.
ContributorsShangraw, Ann Mariah (Author) / Kwan, Virginia (Thesis director) / Neuberg, Steven (Committee member) / Cavanaugh Toft, Carolyn (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2015-05
135836-Thumbnail Image.png
Description
To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course

To supplement lectures, various resources are available to students; however, little research has been done to look systematically at which resources studies find most useful and the frequency at which they are used. We have conducted a preliminary study looking at various resources available in an introductory material science course over four semesters using a custom survey called the Student Resource Value Survey (SRVS). More specifically, the SRVS was administered before each test to determine which resources students use to do well on exams. Additionally, over the course of the semester, which resources students used changed. For instance, study resources for exams including the use of homework problems decreased from 81% to 50%, the utilization of teaching assistant for exam studying increased from 25% to 80%, the use of in class Muddiest Points for exam study increased form 28% to 70%, old exams and quizzes only slightly increased for exam study ranging from 78% to 87%, and the use of drop-in tutoring services provided to students at no charge decreased from 25% to 17%. The data suggest that students thought highly of peer interactions by using those resources more than tutoring centers. To date, no research has been completed looking at courses at the department level or a different discipline. To this end, we adapted the SRVS administered in material science to investigate resource use in thirteen biomedical engineering (BME) courses. Here, we assess the following research question: "From a variety of resources, which do biomedical engineering students feel addresses difficult concept areas, prepares them for examinations, and helps in computer-aided design (CAD) and programming the most and with what frequency?" The resources considered include teaching assistants, classroom notes, prior exams, homework problems, Muddiest Points, office hours, tutoring centers, group study, and the course textbook. Results varied across the four topical areas: exam study, difficult concept areas, CAD software, and math-based programming. When preparing for exams and struggling with a learning concept, the most used and useful resources were: 1) homework problems, 2) class notes and 3) group studying. When working on math-based programming (Matlab and Mathcad) as well as computer-aided design, the most used and useful resources were: 1) group studying, 2) engineering tutoring center, and 3) undergraduate teaching assistants. Concerning learning concepts and exams in the BME department, homework problems and class notes were considered some of the highest-ranking resources for both frequency and usefulness. When comparing to the pilot study in MSE, both BME and MSE students tend to highly favor peer mentors and old exams as a means of studying for exams at the end of the semester1. Because the MSE course only considered exams, we cannot make any comparisons to BME data concerning programming and CAD. This analysis has highlighted potential resources that are universally beneficial, such as the use of peer work, i.e. group studying, engineering tutoring center, and teaching assistants; however, we see differences by both discipline and topical area thereby highlighting the need to determine important resources on a class-by-class basis as well.
ContributorsMalkoc, Aldin (Author) / Ankeny, Casey (Thesis director) / Krause, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135856-Thumbnail Image.png
Description
The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In

The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In the past years, further studies have investigated the benefits of FC in statics, dynamics, and mechanics of materials courses and indicate similar performance benefits. However, these studies address a need for additional studies to validate their results due to the short length of their research or small classroom size. In addition, many of these studies do not measure student attitudes, such as self-efficacy, or the difference in time spent out of class on coursework. The objective of this research is to determine the effectiveness of the flipped classroom system (FC) in comparison to the traditional classroom system (TC) in a large mechanics of materials course. Specifically, it aims to measure student performance, student self-efficacy, student attitudes on lecture quality, motivation, attendance, hours spent out of class, practice, and support, and difference in impact between high, middle, and low achieving students. In order to accomplish this, three undergraduate mechanics of materials courses were analyzed during the spring 2015 semester. One FC section served as the experimental group (92 students), while the two TC sections served as the control group (125 students). To analyze student self-efficacy and attitudes, a survey instrument was designed to measure 18 variables and was administered at the end of the semester. Standardized core outcomes were compared between groups to analyze performance. This paper presents the specific course framework used in this FC, detailed results of the quantitative and qualitative analysis, and discussion of strengths and weaknesses. Overall, an overwhelming majority of students were satisfied with FC and would like more of their classes taught using FC. Strengths of this teaching method include greater confidence, better focus, higher satisfaction with practice in class and assistance received from instructors and peers, more freedom to express ideas and questions in class, and less time required outside of class for coursework. Results also suggest that this method has a greater positive impact on high and low achieving students and leads to higher performance. The criticisms made by students focused on lecture videos to have more worked examples. Overall, results suggest that FC is more effective than TC in a large mechanics of materials course.
ContributorsLee, Andrew Ryan (Author) / Zhu, Haolin (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136119-Thumbnail Image.png
Description
After researching pediatric cancer experiences, an opportunity emerged creating a less intimidating environment for children undergoing chemotherapy. By means of adding a creative component to their IV pole and disguising machinery, children will be a part of an Imagination Voyage adventure. Creative themes allow for a journey on a pirate

After researching pediatric cancer experiences, an opportunity emerged creating a less intimidating environment for children undergoing chemotherapy. By means of adding a creative component to their IV pole and disguising machinery, children will be a part of an Imagination Voyage adventure. Creative themes allow for a journey on a pirate ship, or being in a fantasy castle by captivating children in playtime. The design allows for a frightening experience to become a positive one.
ContributorsHerold, Brittany Ann (Author) / Shin, Dosun (Thesis director) / McDermott, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2015-05
136345-Thumbnail Image.png
Description
The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new blood capillaries that are necessary for the survival of a

The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new blood capillaries that are necessary for the survival of a tumor, as a tumor cannot grow larger than 1-2 mm3 without developing its own blood supply. Vascular disrupting agents, such as iodocombstatin, a derivative of combretastatin, can be used to effectively cut off the blood supply to a growing neoplasm, effectively inhibiting the supply of oxygen and nutrients needed for cell division Thus, VDAs have a very important implication in terms of the future of chemotherapy. A prodrug, defined as an agent that is inactive in the body until metabolized to yield the drug itself, was synthesized by combining iodocombstatin with a β-glucuronide linker. The prodrug is theoretically hydrolyzed in the body to afford the active drug by β-glucuronidase, an enzyme that is produced five times as much by cancer cells as by normal cells. This effectively creates a “magic-bullet” form of chemotherapy, known as Direct Enzyme Prodrug Therapy (DEPT).
ContributorsClark, Caroline Marie (Author) / Pettit, George Robert (Thesis director) / Melody, Noeleen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
136181-Thumbnail Image.png
Description
A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations

A robotic exploration mission that would enter a lunar pit to characterize the environment is described. A hopping mechanism for the robot's mobility is proposed. Various methods of hopping drawn from research literature are discussed in detail. The feasibilities of mechanical, electric, fluid, and combustive methods are analyzed. Computer simulations show the mitigation of the risk of complex autonomous navigation systems. A mechanical hopping mechanism is designed to hop in Earth gravity and carry a payload half its mass. A physical experiment is completed and proves a need for further refinement of the prototype design. Future work is suggested to continue exploring hopping as a mobility method for the lunar robot.
ContributorsMcKinney, Tyler James (Author) / Thangavelautham, Jekan (Thesis director) / Robinson, Mark (Committee member) / Asphaug, Erik (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136199-Thumbnail Image.png
Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the

Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
ContributorsOrr, Adam James (Author) / Davies, Paul (Thesis director) / Bussey, Kimberly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136204-Thumbnail Image.png
Description
This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas

This thesis investigates the viability of a solar still for desalination of a personal water supply. The end goal of the project is to create a design that meets the output requirement while tailoring the components to focus on low cost so it would be feasible in the impoverished areas of the world. The primary requirement is an output of 3 liters of potable water per day, the minimum necessary for an adult human. The study examines the effect of several design parameters, such as the basin material, basin thickness, starting water depth, basin dimensions, cover material, cover angle, and cover thickness. A model for the performance of a solar still was created in MATLAB to simulate the system's behavior and sensitivity to these parameters. An instrumented prototype solar still demonstrated viability of the concept and provided data for validation of the MATLAB model.
ContributorsRasmussen, Dylan James (Author) / Wells, Valana (Thesis director) / Trimble, Steven (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
133424-Thumbnail Image.png
Description
Effective communication and engineering are not a natural pairing. The incongruence is because engineering students are focused on making, designing and analyzing. Since these are the core functions of the field there is not a direct focus on developing communication skills. This honors thesis explores the role and expectations for

Effective communication and engineering are not a natural pairing. The incongruence is because engineering students are focused on making, designing and analyzing. Since these are the core functions of the field there is not a direct focus on developing communication skills. This honors thesis explores the role and expectations for student engineers within the undergraduate engineering education experience to present and communicate ideas. The researchers interviewed faculty about their perspective on students' abilities with respect to their presentation skills to inform the design of a workshop series of interventions intended to make engineering students better communicators.
ContributorsAlbin, Joshua Alexander (Co-author) / Brancati, Sara (Co-author) / Lande, Micah (Thesis director) / Martin, Thomas (Committee member) / Industrial, Systems and Operations Engineering Program (Contributor) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05