Matching Items (55)
Filtering by

Clear all filters

135584-Thumbnail Image.png
Description
Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develo

Breast cancer is the leading cause of cancer-related deaths of women in the united states. Traditionally, Breast cancer is predominantly treated by a combination of surgery, chemotherapy, and radiation therapy. However, due to the significant negative side effects associated with these traditional treatments, there has been substantial efforts to develop alternative therapies to treat cancer. One such alternative therapy is a peptide-based therapeutic cancer vaccine. Therapeutic cancer vaccines enhance an individual's immune response to a specific tumor. They are capable of doing this through artificial activation of tumor specific CTLs (Cytotoxic T Lymphocytes). However, in order to artificially activate tumor specific CTLs, a patient must be treated with immunogenic epitopes derived from their specific cancer type. We have identified that the tumor associated antigen, TPD52, is an ideal target for a therapeutic cancer vaccine. This designation was due to the overexpression of TPD52 in a variety of different cancer types. In order to start the development of a therapeutic cancer vaccine for TPD52-related cancers, we have devised a two-step strategy. First, we plan to create a list of potential TPD52 epitopes by using epitope binding and processing prediction tools. Second, we plan to attempt to experimentally identify MHC class I TPD52 epitopes in vitro. We identified 942 potential 9 and 10 amino acid epitopes for the HLAs A1, A2, A3, A11, A24, B07, B27, B35, B44. These epitopes were predicted by using a combination of 3 binding prediction tools and 2 processing prediction tools. From these 942 potential epitopes, we selected the top 50 epitopes ranked by a combination of binding and processing scores. Due to the promiscuity of some predicted epitopes for multiple HLAs, we ordered 38 synthetic epitopes from the list of the top 50 epitope. We also performed a frequency analysis of the TPD52 protein sequence and identified 3 high volume regions of high epitope production. After the epitope predictions were completed, we proceeded to attempt to experimentally detected presented TPD52 epitopes. First, we successful transduced parental K562 cells with TPD52. After transduction, we started the optimization process for the immunoprecipitation protocol. The optimization of the immunoprecipitation protocol proved to be more difficult than originally believed and was the main reason that we were unable to progress past the transduction of the parental cells. However, we believe that we have identified the issues and will be able to complete the experiment in the coming months.
ContributorsWilson, Eric Andrew (Author) / Anderson, Karen (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135355-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and

Glioblastoma multiforme (GBM) is a malignant, aggressive and infiltrative cancer of the central nervous system with a median survival of 14.6 months with standard care. Diagnosis of GBM is made using medical imaging such as magnetic resonance imaging (MRI) or computed tomography (CT). Treatment is informed by medical images and includes chemotherapy, radiation therapy, and surgical removal if the tumor is surgically accessible. Treatment seldom results in a significant increase in longevity, partly due to the lack of precise information regarding tumor size and location. This lack of information arises from the physical limitations of MR and CT imaging coupled with the diffusive nature of glioblastoma tumors. GBM tumor cells can migrate far beyond the visible boundaries of the tumor and will result in a recurring tumor if not killed or removed. Since medical images are the only readily available information about the tumor, we aim to improve mathematical models of tumor growth to better estimate the missing information. Particularly, we investigate the effect of random variation in tumor cell behavior (anisotropy) using stochastic parameterizations of an established proliferation-diffusion model of tumor growth. To evaluate the performance of our mathematical model, we use MR images from an animal model consisting of Murine GL261 tumors implanted in immunocompetent mice, which provides consistency in tumor initiation and location, immune response, genetic variation, and treatment. Compared to non-stochastic simulations, stochastic simulations showed improved volume accuracy when proliferation variability was high, but diffusion variability was found to only marginally affect tumor volume estimates. Neither proliferation nor diffusion variability significantly affected the spatial distribution accuracy of the simulations. While certain cases of stochastic parameterizations improved volume accuracy, they failed to significantly improve simulation accuracy overall. Both the non-stochastic and stochastic simulations failed to achieve over 75% spatial distribution accuracy, suggesting that the underlying structure of the model fails to capture one or more biological processes that affect tumor growth. Two biological features that are candidates for further investigation are angiogenesis and anisotropy resulting from differences between white and gray matter. Time-dependent proliferation and diffusion terms could be introduced to model angiogenesis, and diffusion weighed imaging (DTI) could be used to differentiate between white and gray matter, which might allow for improved estimates brain anisotropy.
ContributorsAnderies, Barrett James (Author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / Stepien, Tracy (Committee member) / Harrington Bioengineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136723-Thumbnail Image.png
Description
This paper explores how marginalist economics defines and inevitably constrains Victorian sensation fiction's content and composition. I argue that economic intuition implies that sensationalist heroes and antagonists, writers and readers all pursued a fundamental, "rational" aim: the attainment of pleasure. So although "sensationalism" took on connotations of moral impropriety in

This paper explores how marginalist economics defines and inevitably constrains Victorian sensation fiction's content and composition. I argue that economic intuition implies that sensationalist heroes and antagonists, writers and readers all pursued a fundamental, "rational" aim: the attainment of pleasure. So although "sensationalism" took on connotations of moral impropriety in the Victorian age, sensation fiction primarily involves experiences of pain on the page that excite the reader's pleasure. As such, sensationalism as a whole can be seen as a conformist product, one which mirrors the effects of all commodities on the market, rather than as a rebellious one. Indeed, contrary to modern and contemporary critics' assumptions, sensation fiction may not be as scandalous as it seems.
ContributorsFischer, Brett Andrew (Author) / Bivona, Daniel (Thesis director) / Looser, Devoney (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / School of Politics and Global Studies (Contributor) / Department of English (Contributor)
Created2014-12
136760-Thumbnail Image.png
Description
Through collection of survey data on the characteristics of college debaters, disparities in participation and success for women and racial and ethnic minorities are measured. This study then uses econometric tools to assess whether there is an in-group judging bias in college debate that systematically disadvantages female and minority participants.

Through collection of survey data on the characteristics of college debaters, disparities in participation and success for women and racial and ethnic minorities are measured. This study then uses econometric tools to assess whether there is an in-group judging bias in college debate that systematically disadvantages female and minority participants. Debate is used as a testing ground for competing economic theories of taste-based and statistical discrimination, applied to a higher education context. The study finds persistent disparities in participation and success for female participants. Judges are more likely to vote for debaters who share their gender. There is also a significant disparity in the participation of racial and ethnic minority debaters and judges, as well as female judges.
ContributorsVered, Michelle Nicole (Author) / Silverman, Daniel (Thesis director) / Symonds, Adam (Committee member) / Dillon, Eleanor (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Politics and Global Studies (Contributor)
Created2014-12
136199-Thumbnail Image.png
Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the

Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
ContributorsOrr, Adam James (Author) / Davies, Paul (Thesis director) / Bussey, Kimberly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136381-Thumbnail Image.png
Description
According to the Tax Policy Center, a joint project of the Brookings Institution and Urban Institute, the Earned Income Tax Credit (EITC) will provide 26 million households with 60 billion dollars of reduced taxes and refunds in 2015 \u2014 resources that serve to lift millions of families above the federal

According to the Tax Policy Center, a joint project of the Brookings Institution and Urban Institute, the Earned Income Tax Credit (EITC) will provide 26 million households with 60 billion dollars of reduced taxes and refunds in 2015 \u2014 resources that serve to lift millions of families above the federal poverty line. Responding to the popularity of EITC programs and recent discussion of its expansion for childless adults, I select three comparative case studies of state-level EITC reform from 2005 to 2013. Each state represents a different kind of policy reform: the creation of a supplemental credit in Connecticut, credit reduction in New Jersey, and finally credit expansion for childless adults in Maryland. For each case study, I use Current Population Survey panel data from the March Supplement to complete a differences-in-differences (DD) analysis of EITC policy changes. Specifically, I analyze effects of policy reform on total earned income, employment and usual hours worked. For comparison groups, I construct unique counterfactual populations of northeastern U.S. states, using people of color with less than a college degree as my treatment group for their increased sensitivity to EITC policy reform. I find no statistically significant effects of policy creation in Connecticut, significant decreases in employment and hours worked in New Jersey, and finally, significant increases in earnings and hours worked in Maryland. My work supports the findings of other empirical work, suggesting that awareness of new supplemental EITC programs is critical to their effectiveness while demonstrating that these types of programs can affect the labor supply and outcomes of eligible groups.
ContributorsRichard, Katherine Rose (Author) / Dillon, Eleanor Wiske (Thesis director) / Silverman, Daniel (Committee member) / Herbst, Chris (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor)
Created2015-05
133171-Thumbnail Image.png
Description
Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic

Magnetic resonance imaging (MRI) data of metastatic brain cancer patients at the Barrow Neurological Institute sparked interest in the radiology department due to the possibility that tumor size distributions might mimic a power law or an exponential distribution. In order to consider the question regarding the growth trends of metastatic brain tumors, this thesis analyzes the volume measurements of the tumor sizes from the BNI data and attempts to explain such size distributions through mathematical models. More specifically, a basic stochastic cellular automaton model is used and has three-dimensional results that show similar size distributions of those of the BNI data. Results of the models are investigated using the likelihood ratio test suggesting that, when the tumor volumes are measured based on assuming tumor sphericity, the tumor size distributions significantly mimic the power law over an exponential distribution.
ContributorsFreed, Rebecca (Co-author) / Snopko, Morgan (Co-author) / Kostelich, Eric (Thesis director) / Kuang, Yang (Committee member) / WPC Graduate Programs (Contributor) / School of Accountancy (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132454-Thumbnail Image.png
Description
Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life

Cancer is a disease that occurs in many and perhaps all multicellular organisms. Current research is looking at how different life history characteristics among species could influence cancer rates. Because somatic maintenance is an important component of a species' life history, we hypothesize the same ecological forces shaping the life history of a species should also determine its cancer susceptibility. By looking at varying life histories, potential evolutionary trends could be used to explain differing cancer rates. Life history theory could be an important framework for understanding cancer vulnerabilities with different trade-offs between life history traits and cancer defenses. Birds have diverse life history strategies that could explain differences in cancer suppression. Peto's paradox is the observation that cancer rates do not typically increase with body size and longevity despite an increased number of cell divisions over the animal's lifetime that ought to be carcinogenic. Here we show how Peto’s paradox is negatively correlated for cancer within the clade, Aves. That is, larger, long-lived birds get more cancer than smaller, short-lived birds (p=0.0001; r2= 0.024). Sexual dimorphism in both plumage color and size differ among Aves species. We hypothesized that this could lead to a difference in cancer rates due to the amount of time and energy sexual dimorphism takes away from somatic maintenance. We tested for an association between a variety of life history traits and cancer, including reproductive potential, growth rate, incubation, mating systems, and sexual dimorphism in both color and size. We found male birds get less cancer than female birds (9.8% vs. 11.1%, p=0.0058).
ContributorsDolan, Jordyn Nicole (Author) / Maley, Carlo (Thesis director) / Harris, Valerie (Committee member) / Boddy, Amy (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133831-Thumbnail Image.png
Description
Many fear that the growth of automation and artificial intelligence will lead to massive unemployment since human labor would no longer be needed. Although automation does displace workers from their current jobs, it is unclear the total net effect on jobs this period of advancement will have. One possible solution

Many fear that the growth of automation and artificial intelligence will lead to massive unemployment since human labor would no longer be needed. Although automation does displace workers from their current jobs, it is unclear the total net effect on jobs this period of advancement will have. One possible solution to help displaced workers is a Universal Basic Income. A Universal Basic Income(UBI) is a set payment paid to all members of society regardless of working status. Compared to current unemployment programs, a Universal Basic Income does not restrict participants in how to spend the money and is more inclusive. This paper examines the effects of a UBI on a person's motivation to work through a study on current college students. There is reason to believe that a Universal Basic Income will lead to fewer people working as people may become dependent on a base payment to meet their basic needs and not look for work. In addition, some people may drop out of their current jobs and rely on a UBI as their main form of income. The current literature does not offer a consensus opinion on this relationship and more studies are being completed with the threat of mass unemployment looming. This study shows the effects of a UBI on participants' willingness to work and then applies these results to the current economic model. With these results and new economic model, a decision about future policies surrounding a UBI can be made.
ContributorsAgarwal, Raghav (Author) / Pulido Hernadez, Carlos (Thesis director) / Foster, William (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137021-Thumbnail Image.png
Description
Economists, political philosophers, and others have often characterized social preferences regarding inequality by imagining a hypothetical choice of distributions behind "a veil of ignorance". Recent behavioral economics work has shown that subjects care about equality of outcomes, and are willing to sacrifice, in experimental contexts, some amount of personal gain

Economists, political philosophers, and others have often characterized social preferences regarding inequality by imagining a hypothetical choice of distributions behind "a veil of ignorance". Recent behavioral economics work has shown that subjects care about equality of outcomes, and are willing to sacrifice, in experimental contexts, some amount of personal gain in order to achieve greater equality. We review some of this literature and then conduct an experiment of our own, comparing subjects' choices in two risky situations, one being a choice for a purely individualized lottery for themselves, and the other a choice among possible distributions to members of a randomly selected group. We find that choosing in the group situation makes subjects significantly more risk averse than when choosing an individual lottery. This supports the hypothesis that an additional preference for equality exists alongside ordinary risk aversion, and that in a hypothetical "veil of ignorance" scenario, such preferences may make subjects significantly more averse to unequal distributions of rewards than can be explained by risk aversion alone.
ContributorsTheisen, Alexander Scott (Co-author) / McMullin, Caitlin (Co-author) / Li, Marilyn (Co-author) / DeSerpa, Allan (Thesis director) / Schlee, Edward (Committee member) / Baldwin, Marjorie (Committee member) / Barrett, The Honors College (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2014-05