Matching Items (97)
Filtering by

Clear all filters

134152-Thumbnail Image.png
Description
Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of

Due to artificial selection, dogs have high levels of phenotypic diversity, yet, there appears to be low genetic diversity within individual breeds. Through their domestication from wolves, dogs have gone through a series of population bottlenecks, which has resulted in a reduction in genetic diversity, with a large amount of linkage disequilibrium and the persistence of deleterious mutations. This has led to an increased susceptibility to a multitude of diseases, including cancer. To study the effects of artificial selection and life history characteristics on the risk of cancer mortality, we collected cancer mortality data from four studies as well as the percent of heterozygosity, body size, lifespan and breed group for 201 dog breeds. We also collected specific types of cancer breeds were susceptible to and compared the dog cancer mortality patterns to the patterns observed in other mammals. We found a relationship between cancer mortality rate and heterozygosity, body size, lifespan as well as breed group. Higher levels of heterozygosity were also associated with longer lifespan. These results indicate larger breeds, such as Irish Water Spaniels, Flat-coated Retrievers and Bernese Mountain Dogs, are more susceptible to cancer, with lower heterozygosity and lifespan. These breeds are also more susceptible to sarcomas, as opposed to carcinomas in smaller breeds, such as Miniature Pinschers, Chihuahuas, and Pekingese. Other mammals show that larger and long-lived animals have decreased cancer mortality, however, within dog breeds, the opposite relationship is observed. These relationships could be due to the trade-off between cellular maintenance and growing fast and large, with higher expression of growth factors, such as IGF-1. This study further demonstrates the relationships between cancer mortality, heterozygosity, and life history traits and exhibits dogs as an important model organism for understanding the relationship between genetics and health.
ContributorsBalsley, Cassandra Sierra (Author) / Maley, Carlo (Thesis director) / Wynne, Clive (Committee member) / Tollis, Marc (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134327-Thumbnail Image.png
Description
The Mexican gray wolf (Canis lupus baileyi) is a genetically distinct subspecies of the gray wolf (Canis lupus) that was driven to the brink of extinction as a result of human persecution. The wolf is listed as Endangered under the Endangered Species Act, and a recovery program is underway in

The Mexican gray wolf (Canis lupus baileyi) is a genetically distinct subspecies of the gray wolf (Canis lupus) that was driven to the brink of extinction as a result of human persecution. The wolf is listed as Endangered under the Endangered Species Act, and a recovery program is underway in Arizona and New Mexico to restore its population. However, the wolf is struggling to recover due to high mortality, which is a result of continued human hostility toward it. This thesis examines historical and current human attitudes toward the wolf and the implications that they have had on the extermination and recovery of the subspecies. An overview is given of wolf biology, the history of wolf extermination and recovery, and recent events relating to the recovery of the wolf. Negative impacts on ranching, hunting, and human safety are the main reasons for opposition toward wolves and wolf recovery; these concerns are analyzed, and solutions to them are proposed, with the goal of addressing them while fostering non-lethal coexistence with the wolf. In addition, opposition to wolves and wolf recovery is tied in with larger socio-political issues and is influenced by the representation of the wolf in culture; these issues in the context of wolves are also analyzed.
ContributorsLenk, Heather Nicole (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Brown, David E. (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
136542-Thumbnail Image.png
Description
Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody

Introduction: Human papillomavirus (HPV) infection is seen in up to 90% of cases of cervical cancer, the third leading cancer cause of death in women. Current HPV screening focuses on only two HPV types and covers roughly 75% of HPV-associated cervical cancers. A protein based assay to test for antibody biomarkers against 98 HPV antigens from both high and low risk types could provide an inexpensive and reliable method to screen for patients at risk of developing invasive cervical cancer. Methods: 98 codon optimized, commercially produced HPV genes were cloned into the pANT7_cGST vector, amplified in a bacterial host, and purified for mammalian expression using in vitro transcription/translation (IVTT) in a luminescence-based RAPID ELISA (RELISA) assay. Monoclonal antibodies were used to determine immune cross-reactivity between phylogenetically similar antigens. Lastly, several protein characteristics were examined to determine if they correlated with protein expression. Results: All genes were successfully moved into the destination vector and 86 of the 98 genes (88%) expressed protein at an adequate level. A difference was noted in expression by gene across HPV types but no correlation was found between protein size, pI, or aliphatic index and expression. Discussion: Further testing is needed to express the remaining 12 HPV genes. Once all genes have been successfully expressed and purified at high concentrations, DNA will be printed on microscope slides to create a protein microarray. This microarray will be used to screen HPV-positive patient sera for antibody biomarkers that may be indicative of cervical cancer and precancerous cervical neoplasias.
ContributorsMeshay, Ian Matthew (Author) / Anderson, Karen (Thesis director) / Magee, Mitch (Committee member) / Katchman, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136562-Thumbnail Image.png
Description
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality in the USA and throughout the world. Two phenotypes that promote this deadly outcome are the invasive potential of NSCLC and the emergence of therapeutic resistance in this disease. There is an unmet clinical need to understand the mechanisms that govern NSCLC cell invasion and therapeutic resistance, and to target these phenotypes towards abating the dismal five-year survival of NSCLC. The expression of the tumor necrosis factor receptor superfamily, member 12A (TNFRSF12A; Fn14) correlates with poor patient survival and invasiveness in many tumor types including NSCLC. We hypothesize that suppression of Fn14 will inhibit NSCLC cell motility and reduce cell viability. Here we demonstrate that atorvastatin calcium treatment reduces Fn14 expression in NSCLC cell lines. Prior to Fn14 protein suppression, atorvastatin calcium modulated the expression of the Fn14 modulators P-ERK1/2 and P-NF-κβ. Atorvastatin calcium treatment inhibited the migratory capacity in H1975, H2030 and H1993 cells by at least 55%. When chemotactic migration in H2030 cells was induced by the Fn14 ligand TNF-like weak inducer of apoptosis (TWEAK) treatment, atorvastatin calcium successfully negated any stimulatory effects. Inversely, treatment of NSCLC cells with cholesterol resulted in a statistically significant increase in migration. Depletion of Fn14 expression via siRNA suppressed the migratory effect of cholesterol. Finally, atorvastatin calcium treatment sensitized cells to radiation treatment, reducing cell survival. These data suggest that atorvastatin calcium may inhibit NSCLC invasiveness through a mechanism involving Fn14, and may be a novel therapeutic target in NSCLC tumors expressing Fn14.
ContributorsCornes, Victoria Elisabeth (Author) / Stout, Valerie (Thesis director) / Whitsett, Timothy (Committee member) / Carson, Vashti (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136419-Thumbnail Image.png
Description
A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai)

A literature review summarizing the current status of conservation efforts of the Mojave Desert tortoise (Gopherus agassizii) including a brief overview of the Endangered Species Act (ESA) and its applicability to this species' conservation. A genetic and physiological comparison of the morphologically similar Mojave species with the Sonoran (Gopherus morafkai) species proceeded by an analysis of if and how the ESA should apply to the Sonoran population. Analysis of current plans and interagency cooperations followed by a multi-step proposal on how best to conserve the Sonoran population of Desert tortoise.
ContributorsKulik, Elise Chikako (Author) / Kusumi, Kenro (Thesis director) / Tollis, Marc (Committee member) / Wilson Sayres, Melissa (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136199-Thumbnail Image.png
Description
Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the

Despite the 40-year war on cancer, very limited progress has been made in developing a cure for the disease. This failure has prompted the reevaluation of the causes and development of cancer. One resulting model, coined the atavistic model of cancer, posits that cancer is a default phenotype of the cells of multicellular organisms which arises when the cell is subjected to an unusual amount of stress. Since this default phenotype is similar across cell types and even organisms, it seems it must be an evolutionarily ancestral phenotype. We take a phylostratigraphical approach, but systematically add species divergence time data to estimate gene ages numerically and use these ages to investigate the ages of genes involved in cancer. We find that ancient disease-recessive cancer genes are significantly enriched for DNA repair and SOS activity, which seems to imply that a core component of cancer development is not the regulation of growth, but the regulation of mutation. Verification of this finding could drastically improve cancer treatment and prevention.
ContributorsOrr, Adam James (Author) / Davies, Paul (Thesis director) / Bussey, Kimberly (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
132442-Thumbnail Image.png
Description
Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer,

Cancer poses a significant burden on the global health system and represents a leading cause of death worldwide. For late-stage cancers, the traditional treatments of chemotherapy, radiation, and surgery are not always viable, and they can pose unnecessary health risks to the patients. New immunotherapies, such as adoptive cell transfer, are being developed and refined to treat such cancers. T cell immunotherapies in particular, where a patient’s T cell lymphocytes are isolated and amplified to be re-infused into the patient or where human cell lines are engineered to express T cell receptors for the recognition of common cancer antigens, are being expanded on because for some cancers, they could be the only option. Constructing an optimal pipeline for cloning and expression of antigen-specific TCRs has significant bearing on the efficacy of engineered cell lines for ACT. Adoptive T cell transfer, while making great strides, has to overcome a diverse T cell repertoire – cloning and expressing antigen-specific TCRs can mediate this understanding. Having identified the high frequency FluM1-specific TCR sequences in stimulated donor PBMCs, it was hypothesized that the antigen-specific TCR could be reconstructed via Gateway cloning methods and tested for expression and functionality. Establishing this pipeline would confirm an ability to properly pair and express the heterodimeric chains. In the context of downstream applications, neoantigens would be used to stimulate T cells, the α and β chains would be paired via single-cell or bulk methods, and instead of Gateway cloning, the CDR3 hypervariable regions α and β chains alone would be co-expressed using Golden Gate assembly methods.
ContributorsHirneise, Gabrielle Rachel (Author) / Anderson, Karen (Thesis director) / Mason, Hugh (Committee member) / Hariadi, Hugh (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133633-Thumbnail Image.png
Description
Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway

Programmed cell death ligand-1 (PD-L1) is an overexpressed protein on many tumor cell types. PD-L1 is involved in normal immune regulation, playing an important role in self-tolerance and controlling autoimmunity. However, ligation of PD-L1 to PD-1 on activated T cells leads to tumor-mediated T cell suppression. Inhibiting the PD-1/PD-L1 pathway has emerged as an effective target for anti-tumor immunotherapies. Monoclonal antibodies (mAbs) targeting tumor-associated antigens such as PD-L1 have proven to be effective checkpoint blockades, improving therapeutic outcomes for cancer patients and receiving FDA approval as first line therapies for some cancers. A single chain variable fragment (scFv) is composed of the variable heavy and light chain regions of a mAb, connected by a flexible linker. We hypothesized that scFv proteins based on the published anti-PD-L1 monoclonal antibody sequences of atezolizumab and avelumab would bind to cell surface PD-L1. Four single chain variable fragments (scFvs) were constructed based on the sequences of these mAbs. PCR was used to assemble, construct, and amplify DNA fragments encoding the scFvs which were subsequently ligated into a eukaryotic expression vector. Mammalian cells were transfected with the scFv and scFv-IgG plasmids. The scFvs were tested for binding to PD-L1 on tumor cell lysates by western blot and to whole tumor cells by staining and flow cytometry analysis. DNA sequence analysis demonstrated that the scFv constructs were successfully amplified and cloned into the expression vectors and recombinant scFvs were produced. The binding capabilities of the scFvs constucts to PD-L1 protein were confirmed by western blot and flow cytometry analysis. This lead to the idea of constructing a CAR T cell engineered to target PD-L1, providing a possible adoptive T cell immunotherapy.
ContributorsPfeffer, Kirsten M. (Author) / Lake, Douglas (Thesis director) / Ho, Thai (Committee member) / Hastings, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133855-Thumbnail Image.png
Description
The International Union for Conservation of Nature's Red List of Threatened Species is the most comprehensive and objective global approach to evaluate the conservation status of species by categorizing species based on relative extinction risk. For the Global Muranidae IUCN Red List assessment, all known, taxonomically valid species of Muraenidae

The International Union for Conservation of Nature's Red List of Threatened Species is the most comprehensive and objective global approach to evaluate the conservation status of species by categorizing species based on relative extinction risk. For the Global Muranidae IUCN Red List assessment, all known, taxonomically valid species of Muraenidae were assessed for their extinction risk using the IUCN Red List Global Categories and Criteria. Of all 208 Muraenidae species, it was concluded that 86% of species qualified for Least Concern, 13% of species are Data Deficient, and 1% of species qualified for a threatened category. Channomuraena bauchotae is listed as threatened under VU D2 and Gymnothorax parini qualified for VU B2ab(iii). This study will have brought the International Union for the Conservation of Nature one step closer to their goal of conducting Red List assessments of all the world's species(not including microorganisms). Future implications of this study may include future monitoring of key habitat areas and species or conducting further research to gain a more in depth understanding of the life history and threats to Muraenidae.
ContributorsLaurence, Paige Marie (Author) / Polidoro, Beth (Thesis director) / Ralph, Gina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137215-Thumbnail Image.png
Description
Conservation is a complicated entity consisting of a multitude of professional fields including social issues, cultural issues, and physical science. This thesis evaluates the positive and negative aspects of two broad types of conservation: top down fortress conservation and bottom up community-based conservation. Fortress conservation has many negative aspects, such

Conservation is a complicated entity consisting of a multitude of professional fields including social issues, cultural issues, and physical science. This thesis evaluates the positive and negative aspects of two broad types of conservation: top down fortress conservation and bottom up community-based conservation. Fortress conservation has many negative aspects, such as displacing human communities and preventing utilization of resources. However, it also has positive aspects, such as preventing the destruction of delicate ecosystems and slowing down extinctions. Community-based conservation is more inclusive and focuses on including the indigenous populations located within the proposed conservation site in the decision-making process. Its negatives include having an anthropocentric goal instead of valuing nature's intrinsic values. Understanding the differences inherent in these two methods is necessary in order to implement a conservation network with the highest chance for success.
ContributorsFink, Laurel Berylline (Author) / Smith, Andrew (Thesis director) / Collins, James (Committee member) / Minteer, Ben (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05