Matching Items (3)
Filtering by

Clear all filters

133102-Thumbnail Image.png
Description
Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014).

Advances in computational processing have made big data analysis in fields like music information retrieval (MIR) possible. Through MIR techniques researchers have been able to study information on a song, its musical parameters, the metadata generated by the song's listeners, and contextual data regarding the artists and listeners (Schedl, 2014). MIR research techniques have been applied within the field of music and emotions research to help analyze the correlative properties between the music information and the emotional output. By pairing methods within music and emotions research with the analysis of the musical features extracted through MIR, researchers have developed predictive models for emotions within a musical piece. This research has increased our understanding of the correlative properties of certain musical features like pitch, timbre, rhythm, dynamics, mel frequency cepstral coefficients (MFCC's), and others, to the emotions evoked by music (Lartillot 2008; Schedl 2014) This understanding of the correlative properties has enabled researchers to generate predictive models of emotion within music based on listeners' emotional response to it. However, robust models that account for a user's individualized emotional experience and the semantic nuances of emotional categorization have eluded the research community (London, 2001). To address these two main issues, more advanced analytical methods have been employed. In this article we will look at two of these more advanced analytical methods, machine learning algorithms and deep learning techniques, and discuss the effect that they have had on music and emotions research (Murthy, 2018). Current trends within MIR research, the application of support vector machines and neural networks, will also be assessed to explain how these methods help to address the two main issues within music and emotion research. Finally, future research within the field of machine and deep learning will be postulated to show how individuate models may be developed from a user or a pool of user's listening libraries. Also how developments of semi-supervised classification models that assess categorization by cluster instead of by nominal data, may be helpful in addressing the nuances of emotional categorization.
ContributorsMcgeehon, Timothy Makoto (Author) / Middleton, James (Thesis director) / Knowles, Kristina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
134070-Thumbnail Image.png
Description
This research was intended to investigate the effects of various motivational variables on high school students' declaration of a STEM major in college, focusing on PSEM majors. It made use of data from the High School Longitudinal Study of 2009, including the first and second follow-up years (2011 and 2013).

This research was intended to investigate the effects of various motivational variables on high school students' declaration of a STEM major in college, focusing on PSEM majors. It made use of data from the High School Longitudinal Study of 2009, including the first and second follow-up years (2011 and 2013). The advantage of this study over others is due to this data set, which was designed to be a representative sample of the national population of US high school students. Effects of motivational factors were considered in the context of demographic groups, with the analysis conducted on PSEM declaration illuminating a problem in the discrepancy between male and female high school students. In general, however, PSEM retention from intention to declaration is abysmal, with only 35% of those students who intended towards PSEM actually enrolling.
ContributorsMangu, Daniel Matei (Author) / Middleton, James (Thesis director) / Ganesh, Tirupalavanam (Committee member) / School of International Letters and Cultures (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
147913-Thumbnail Image.png
Description

This study investigated how mindset intervention in freshman engineering courses influenced students’ implicit intelligence and self-efficacy beliefs. An intervention which bolsters students’ beliefs that they possess the cognitive tools to perform well in their classes can be the deciding factor in their decision to continue in their engineering major. Treatment

This study investigated how mindset intervention in freshman engineering courses influenced students’ implicit intelligence and self-efficacy beliefs. An intervention which bolsters students’ beliefs that they possess the cognitive tools to perform well in their classes can be the deciding factor in their decision to continue in their engineering major. Treatment was administered across four sections of an introductory engineering course where two professors taught two sections. Across three survey points, one course of each professor received the intervention while the other remained neutral, but the second time point switched this condition, so all students received intervention. Robust efficacy and mindset scales quantitatively measured the strength of their beliefs in their abilities, general and engineering, and if they believed they could change their intelligence and abilities. Repeated measures ANOVA and linear regressions revealed that students who embody a growth mindset tended to have stronger and higher self-efficacy beliefs. With the introduction of intervention, the relationship between mindset and self-efficacy grew stronger and more positive over time.

ContributorsFulginiti, Alexander Ellis (Author) / Middleton, James (Thesis director) / Grewal, Anoop (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05