Matching Items (9)
Filtering by

Clear all filters

153350-Thumbnail Image.png
Description
Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease has not been well-studied. Therefore, this study examined the impact of a six week HFD (60% fat) on kidney structure

Long term high fat diets (HFD) are correlated with the development of diabetes

and kidney disease. However, the impact of short term high fat intake on the etiology of kidney disease has not been well-studied. Therefore, this study examined the impact of a six week HFD (60% fat) on kidney structure and function in young male Sprague-Dawley rats. Previous studies have shown that these animals develop indices of diabetes compared to rats fed a standard rodent chow (5% fat) for six weeks. The hypothesis of this study is that six weeks of HFD will lead to early stages of kidney disease as evidenced by morphological and functional changes in the kidney. Alterations in morphology were determined by measuring structural changes in the kidneys (changes in mass, fatty acid infiltration, and structural damage). Alterations in kidney function were measured by analyzing urinary biomarkers of oxidative RNA/DNA damage, renal tissue lipid peroxidation, urinary markers of impaired kidney function (urinary protein, creatinine, and hydrogen peroxide (H2O2)), markers of inflammation (tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6)), as well as cystatin C, a plasma biomarker of kidney function. The results of these studies determined that short term HFD intake is not sufficient to induce early stage kidney disease. Beyond increases in renal mass, there were no significant differences between the markers of renal structure and function in the HFD and standard rodent chow-fed rats.
ContributorsCrinigan, Catherine (Author) / Sweazea, Karen (Thesis advisor) / Johnston, Carol (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2015
156509-Thumbnail Image.png
Description
Cardiovascular disease has reached epidemic proportions resulting in its ranking as the number one cause of mortality in the Western world. A key player in the pathophysiology of vascular disease is oxidative stress due to free radical accumulation. This intervention study was conducted to evaluate any potential mediation of oxidative

Cardiovascular disease has reached epidemic proportions resulting in its ranking as the number one cause of mortality in the Western world. A key player in the pathophysiology of vascular disease is oxidative stress due to free radical accumulation. This intervention study was conducted to evaluate any potential mediation of oxidative stress using a soil-derived organometallic compound (OMC) with suspected antioxidant properties. A 10-week study was conducted in male Sprague-Dawley rats (n = 42) fed either a high-fat diet (HFD) consisting of 60% kcal from fat or a standard Chow diet containing only 6% kcals from fat. Rats from each diet group were then subdivided into 3 subgroups (n = 6-10 each) that received 0.0 mg/mL, 0.6 mg/mL or 3.0 mg/mL OMC. Neither the diet nor OMC significantly changed protein expression of inducible nitric oxide synthase (iNOS) in isolated aortas. Plasma levels of the inflammatory marker, tumor necrosis factor alpha (TNFα) were below detection after the 10-week trial. Superoxide dismutase (SOD), a scavenger of the free radical, superoxide, was not significantly different following HFD although levels of SOD were significantly higher in Chow rats treated with 0.6 mg/mL OMC compared to HFD rats treated with the same dose (p < 0.05). Lipopolysaccharides (LPS) were significantly increased following 10 weeks of high fat intake (p < 0.05). This increase in endotoxicity was prevented by the high dose of OMC. HFD significantly increased fasting serum glucose levels at both 6 weeks (p < 0.001) and 10 weeks (p < 0.025) compared to Chow controls. The high dose of OMC significantly prevented the hyperglycemic effects of the HFD in rats at 10 weeks (p = 0.021). HFD-fed rats developed hyperinsulinemia after 10 weeks of feeding (p = 0.009), which was not prevented by OMC. The results of this study indicate that OMC may be an effective strategy to help manage diet-induced hyperglycemia and endotoxemia. However, further research is needed to determine the mechanism by which OMC helps prevent hyperglycemia as measures of inflammation (TNFα) and vascular damage (iNOS) were inconclusive.
ContributorsWatson, Deborah F (Author) / Sweazea, Karen L (Thesis advisor) / Johnston, Carol (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2018
157209-Thumbnail Image.png
Description
Introduction: Cystic fibrosis (CF) is the most common life-shortening autosomal recessive genetic disease affecting Caucasians. The disease is characterized by a dysfunctional cystic fibrosis transmembrane regulator (CFTR) protein and aberrant mucus accumulation that subsequently alters the physicochemical environment in numerous organ systems. These mucosal perturbations have been associated with inflammation

Introduction: Cystic fibrosis (CF) is the most common life-shortening autosomal recessive genetic disease affecting Caucasians. The disease is characterized by a dysfunctional cystic fibrosis transmembrane regulator (CFTR) protein and aberrant mucus accumulation that subsequently alters the physicochemical environment in numerous organ systems. These mucosal perturbations have been associated with inflammation and microbial dysbiosis, most notably in the lungs and gastrointestinal (GI) tract. Genistein, a soy isoflavone and dietary polyphenol, has been shown to modulate CFTR function in cell cultures and murine models, as well exert sex-dependent improvement of survival rates in a CF mouse model. However, it is unknown whether dietary genistein affects gut microbiome diversity and community structure in cystic fibrosis. This study sought to examine associations between dietary genistein treatment and gut microbiome diversity and community structure in a murine model of CF. Methods: Twenty-four male and female mice homozygous for the DF508 CFTR gene mutation were maintained on one of three diet regimens for a 45-day period (n=11, standard chow; n=7, Colyte-treated water and standard chow; n=6, 600 mg dietary genistein per kg body weight). One fecal pellet was collected per mouse post-treatment, and microbial genomic DNA was extracted from the fecal samples, quantified, amplified, and sequenced on the Illumina MiSeq platform. QIIME 2 was used to conduct alpha- and beta-diversity analyses on all samples. Results: Measures of alpha-diversity were significantly decreased in the dietary genistein group as compared to either standard chow or Colyte groups. Measures of beta-diversity showed that community structure differed significantly between dietary treatment groups; these differences were further illustrated by distinct clustering of taxa as shown by principal coordinates analysis plots. Conclusion: This 3-arm parallel experimental study showed that dietary genistein treatment was associated with decreased microbial diversity and differences in microbial community structure in DF508 mice.
ContributorsArgo, Katy Bryana (Author) / Whisner, Corrie M (Thesis advisor) / Al-Nakkash, Layla (Committee member) / Sweazea, Karen L (Committee member) / Arizona State University (Publisher)
Created2019
157048-Thumbnail Image.png
Description
Background: Nearly 95% of Americans will develop hypertension, and 67% will not seek treatment. Furthermore, hypertension is the leading risk factor for coronary heart disease. While previous studies have increased the use of blood pressure medication among patients that have received hypertension education, medications may not work for everyone.

Background: Nearly 95% of Americans will develop hypertension, and 67% will not seek treatment. Furthermore, hypertension is the leading risk factor for coronary heart disease. While previous studies have increased the use of blood pressure medication among patients that have received hypertension education, medications may not work for everyone. Due to the life-threatening nature of this condition, it is essential to find an effective alternative for treatment. The purpose of this study was to examine the impact of organometallic complex supplementation on hypertension and left ventricular hypertrophy in 6-week old male Sprague-Dawley rats that were fed either standard rodent chow or a high fat diet for 10 weeks at a university in Arizona.

Methods: Forty-two healthy six-week old male Sprague-Dawley rats were randomly assigned to one of three groups: plain water control, 0.6 mg/ml organometallic complex or 3.0 mg/ml organometallic complex as soon as they arrived. Each rat was then housed individually to prevent the sharing of microbiota through coprophagia. Rats in each treatment group were further divided into two dietary groups that were fed either a high fat diet containing 60% kcal fat that was changed every three days or standard rodent chow. Researchers were not blind to which rat was in each group. At the end of the 10-week study, rats were euthanized with an overdose of sodium pentobarbital (200 mg/kg, i.p.). Heart, left ventricle of the heart, liver, and spleen masses were recorded for each animal. Data were analyzed by two-way ANOVA using SigmaPlot 10.0 software.

Results: At the conclusion of this study, the left ventricle mass of the rats in the high fat diet group were significantly larger than those in the chow group. Neither dose of the organometallic complex supplement prevented these effects induced by high fat feeding.

Conclusion: The organometallic complex supplement was not effective at mitigating the effects of a high fat diet on cardiac hypertrophy in rats. Therefore, this supplement should not be used to treat cardiac hypertrophy.
ContributorsMcCormick, Kelly Ann (Author) / Sweazea, Karen L (Thesis advisor) / Whisner, Corrie M (Committee member) / Alexon, Christy (Committee member) / Arizona State University (Publisher)
Created2019
136226-Thumbnail Image.png
Description
Western diets, high in dietary fat and red meat, are associated with hyperglycemia and weight gain, symptoms that promote insulin resistance and diabetes. Previous studies have shown that elevated glucose promotes glycation of circulating proteins such as albumin, which is thought to lead to hyperglycemia complications. It was hypothesized that

Western diets, high in dietary fat and red meat, are associated with hyperglycemia and weight gain, symptoms that promote insulin resistance and diabetes. Previous studies have shown that elevated glucose promotes glycation of circulating proteins such as albumin, which is thought to lead to hyperglycemia complications. It was hypothesized that diets with no meat consumption (pesco-vegetarian and lacto-vegetarian) would reduce protein glycation, in comparison to a diet with meat. Forty six healthy adult omnivorous subjects were randomized into one of three groups and instructed to either consume red meat (i.e. meat) or poultry twice per day (control), eliminate meat and increase fish consumption (pesco-vegetarian), or adopt a vegetarian diet devoid of fish, meat or poultry (lacto-vegetarian) for four weeks. Fasting plasma samples were collected from participants at baseline and after 4 weeks of the dietary intervention. Plasma glucose concentrations were measured using a commercially available kit. Percent glycated albumin was measured on a separate aliquot of plasma by mass spectrometry. Plasma glucose concentrations were significantly increased following 4-weeks of pesco-vegetarian diet (P=0.002, paired t-test). Neither the lacto-vegetarian (P=0.898) or the control diet (P=0.233) affected plasma glucose concentrations. Despite the significant increase in plasma glucose following a pesco-vegetarian diet, no change in percent glycated albumin was observed (P>0.50, ANOVA). These findings may indicate a protective effect of the pesco-vegetarian diet on protein glycation in the presence of elevated plasma glucose and suggest the need for additional studies to examine the link between increased fish consumption and glucose regulation.
ContributorsRaad, Noor (Author) / Sweazea, Karen (Thesis director, Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136227-Thumbnail Image.png
Description
Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks

Birds have unusually high plasma glucose concentrations compared to mammals of similar size despite their high metabolic rate. While birds use lipids as their main source of energy, it is still unclear how and why they maintain high plasma glucose concentrations. To investigate a potential underlying mechanism, this study looks at the role of lipolysis in glucose homeostasis. The purpose of this study is to examine the effects of decreased glycerol availability (through inhibition of lipolysis) on plasma glucose concentrations in mourning doves. The hypothesis is that decreased availability of glycerol will result in decreased production of glucose through gluconeogenesis leading to reduced plasma glucose concentrations. In the morning of each experiment, mourning doves were collected at the Arizona State University Tempe campus, and randomized into either a control group (0.9% saline) or experimental group (acipimox, 50mg/kg BM). Blood samples were collected prior to treatment, and at 1, 2, and 3 hours post-treatment. At 3 hours, doves were euthanized, and tissue samples were collected for analysis. Acipimox treatment resulted in significant increases in blood glucose concentrations at 1 and 2 hours post- treatment as well as renal triglyceride concentrations at 3 hours post-treatment. Change in plasma free glycerol between 0h and 3h followed an increasing trend for the acipimox treated animals, and a decreasing trend in the saline treated animals. These results do not support the hypothesis that inhibition of lipolysis should decrease blood glycerol and blood glucose levels. Rather, the effects of acipimox in glucose homeostasis appear to differ significantly between birds and mammals suggesting differing mechanisms for glucose homeostasis.
ContributorsKouteib, Soukaina (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
148104-Thumbnail Image.png
Description

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain

Reducing the amount of error and introduced data variability increases the accuracy of Western blot results. In this study, different methods of normalization for loading differences and data alignment were explored with respect to their impact on Western blot results. GAPDH was compared to the LI-COR Revert total protein stain as a loading control. The impact of normalizing data to a control condition, which is commonly done to align Western blot data distributed over several immunoblots, was also investigated. Specifically, this study addressed whether normalization to a small subset of distinct controls on each immunoblot increases pooled data variability compared to a larger set of controls. Protein expression data for NOX-2 and SOD-2 from a study investigating the protective role of the bradykinin type 1 receptor in angiotensin-II induced left ventricle remodeling were used to address these questions but are also discussed in the context of the original study. The comparison of GAPDH and Revert total protein stain as a loading control was done by assessing their correlation and comparing how they affected protein expression results. Additionally, the impact of treatment on GAPDH was investigated. To assess how normalization to different combinations of controls influences data variability, protein data were normalized to the average of 5 controls, the average of 2 controls, or an average vehicle and the results by treatment were compared. The results of this study demonstrated that GAPDH expression is not affected by angiotensin-II or bradykinin type 1 receptor antagonist R-954 and is a less sensitive loading control compared to Revert total protein stain. Normalization to the average of 5 controls tended to reduce pooled data variability compared to 2 controls. Lastly, the results of this study provided preliminary evidence that R-954 does not alter the expression of NOX-2 or SOD-2 to an expression profile that would be expected to explain the protection it confers against Ang-II induced left ventricle remodeling.

ContributorsSiegel, Matthew Marat (Author) / Jeremy, Mills (Thesis director) / Sweazea, Karen (Committee member) / Hale, Taben (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131932-Thumbnail Image.png
Description
Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of

Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of hyperglycemia-related complications, making them ideal for the development of new diabetes treatments with the potential for human application. Previous studies conducted by the Sweazea Lab at Arizona State University aimed to use diet as a means to raise blood glucose in mourning doves (Zenaida macroura) in order to better understand the mechanisms they utilize to stave off oxidative damage. These protocols used dietary interventions—a 60% high fat (HF) “chow” diet, and a high carbohydrate (HC) white bread diet—but were unsuccessful in inducing pathologies. Based on this research, we hypothesized that a model of an urban diet (high in fat, refined carbohydrates, and sodium) might impair vasodilation, as the effect of this diet on birds is currently unknown. We found that tibial vasodilation was significantly impaired in birds fed an urban diet compared to those fed a seed diet. Unexpectedly, vasodilation in the urban diet group was comparable to data of wild-caught birds from previous research, possibly indicating that the birds had already been eating a diet similar to this study’s urban diet before they were caught. This may constitute evidence that the seed diet improved vasodilation while the urban diet more closely mimicked the diet of the birds before the trial, suggesting that the model of the urban diet acted as the control diet in this context. This study is the first step in elucidating avian mechanisms for dealing with diabetogenic diets and has potential to aid in the development of treatments for humans with metabolic syndrome.
ContributorsRenner, Michael William (Author) / Sweazea, Karen (Thesis director) / Johnston, Carol (Committee member) / Basile, Anthony (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
168785-Thumbnail Image.png
Description
Birds have the highest blood glucose concentrations of all vertebrates. Meanwhile, birds do not develop the same physiological complications (e.g., increased oxidative stress and glycation) that mammals do when blood glucose is elevated (i.e., diabetes). Therefore, birds may serve as a negative model animal for hyperglycemic complications. The physiological reason

Birds have the highest blood glucose concentrations of all vertebrates. Meanwhile, birds do not develop the same physiological complications (e.g., increased oxidative stress and glycation) that mammals do when blood glucose is elevated (i.e., diabetes). Therefore, birds may serve as a negative model animal for hyperglycemic complications. The physiological reason for high blood glucose in birds remains largely unknown although several unique characteristics of birds may contribute including a lack of the insulin responsive glucose transport protein, relatively high glucagon concentrations, as well as reliance on fatty acids to sustain the high energetic demands of flight. In breaking down triglycerides for energy, glycerol is liberated, which can be converted to glucose through a process called gluconeogenesis. In addition, the extent to which birds maintain homeostatic control over blood glucose in response to extreme dietary interventions remains unclear and few dietary studies have been conducted in wild-caught birds. Using Mourning Doves (Zenaida macroura) as a model organism, this dissertation tests four hypotheses: 1) Gluconeogenesis contributes to high circulating blood glucose concentration; 2-4) similar to mammals, a fully refined carbohydrate (i.e., white bread diet); a high saturated fat diet (60% kcal from fat); and an urban-type diet comprised of a 1:1 ratio of French fries and birds seed will increase blood glucose compared to a nutritionally-balanced diet after a four-week duration. Contrary to the hypothesis, 150 mg/kg Metformin (which inhibits glycerol gluconeogenesis) increased blood glucose, but 300 mg/kg resulted in no change. However, when 2.5 mg/kg of 1,4-dideoxy-1,4-imino-D-arabinitol (DAB; a glycogenolysis inhibitor) was given with 150 mg/kg of Metformin, blood glucose was not different from the control (50 ul water). This suggests that glycerol gluconeogenesis does not contribute to the naturally high blood glucose in birds and that a low dose of Metformin may increase the rate of glycogenolysis. In addition, all three experimental diets failed to alter blood glucose compared to control diets. Collectively, these results suggest that, in addition to a negative model for diabetes complications, birds can also serve a negative model for diet-induced hyperglycemia. Future research should further examine dietary manipulation in birds while controlling for and examining different variables (e.g., species, sex, duration, diet composition, urbanization).
ContributorsBasile, Anthony Joseph (Author) / Sweazea, Karen L (Thesis advisor) / Deviche, Pierre (Committee member) / Johnston, Carol (Committee member) / Trumble, Ben (Committee member) / Parrington, Diane J (Committee member) / Arizona State University (Publisher)
Created2022