Matching Items (20)
Filtering by

Clear all filters

147950-Thumbnail Image.png
Description

The privatization of prisons within Arizona has been a hot button issue and needs to be further analyzed to determine their benefits and expenses. To begin this investigation into the effectiveness of private prisons within Arizona and possible steps that need to be taken for its rehabilitation certain definitions and

The privatization of prisons within Arizona has been a hot button issue and needs to be further analyzed to determine their benefits and expenses. To begin this investigation into the effectiveness of private prisons within Arizona and possible steps that need to be taken for its rehabilitation certain definitions and prior research need to be understood. Following this explanation, areas such as costs analysis across different types of prisons, liability rates across differing types of prison guards, and the differing psychology of different types of prisons can be examined to gain an overall assessment of the current performance of privatized prisons within Arizona. After this in-depth analysis of the current private prison system within Arizona, the flaws of the system will become abundantly clear and the solutions that should be implemented to alleviate these problems will be discussed.

ContributorsPeters, Grayson Allen (Author) / Rigoni, Adam (Thesis director) / Schuh, Carl (Committee member) / Dean, W.P. Carey School of Business (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
136487-Thumbnail Image.png
Description
Robotic rehabilitation for upper limb post-stroke recovery is a developing technology. However, there are major issues in the implementation of this type of rehabilitation, issues which decrease efficacy. Two of the major solutions currently being explored to the upper limb post-stroke rehabilitation problem are the use of socially assistive rehabilitative

Robotic rehabilitation for upper limb post-stroke recovery is a developing technology. However, there are major issues in the implementation of this type of rehabilitation, issues which decrease efficacy. Two of the major solutions currently being explored to the upper limb post-stroke rehabilitation problem are the use of socially assistive rehabilitative robots, robots which directly interact with patients, and the use of exoskeleton-based systems of rehabilitation. While there is great promise in both of these techniques, they currently lack sufficient efficacy to objectively justify their costs. The overall efficacy to both of these techniques is about the same as conventional therapy, yet each has higher overhead costs that conventional therapy does. However there are associated long-term cost savings in each case, meaning that the actual current viability of either of these techniques is somewhat nebulous. In both cases, the problems which decrease technique viability are largely related to joint action, the interaction between robot and human in completing specific tasks, and issues in robot adaptability that make joint action difficult. As such, the largest part of current research into rehabilitative robotics aims to make robots behave in more "human-like" manners or to bypass the joint action problem entirely.
ContributorsRamakrishna, Vijay Kambhampati (Author) / Helms Tillery, Stephen (Thesis director) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor)
Created2015-05
Description

Shakespeare’s Case for Vulnerability: Giving Voice to Pain and Suffering is a combination of two pieces of work. The research centers around understanding the communication of pain and suffering and how this factors into our everyday lives, in combination with an interview and video project called Evolution of Woman. This

Shakespeare’s Case for Vulnerability: Giving Voice to Pain and Suffering is a combination of two pieces of work. The research centers around understanding the communication of pain and suffering and how this factors into our everyday lives, in combination with an interview and video project called Evolution of Woman. This project sought to determine the different facets of pain and suffering and how, specifically, Shakespeare communicates these concepts in his work. This work also explores how the representation of pain and suffering was different between male and female roles in Shakespeare’s writing. From this research, questions were developed to interview Shakespearean experts and actors. These interviews explore the details of portraying Shakespeare’s characters and how gender plays a role in the characters’ expression of pain and suffering, as well as what it means to be a female actor in plays that are dominated by male characters.

ContributorsAnderies, Ausette (Author) / Espinosa, Micha (Thesis director) / Hunt, Kristin (Committee member) / School of Politics and Global Studies (Contributor) / School of Music, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131163-Thumbnail Image.png
Description
A significant issue in the medical field is a lack of affordable, rehabilitation practices for patients with drop foot. Drop foot is a condition where a person is unable to lift the front part of the foot. People with this condition usually swing their legs in a wide arc to

A significant issue in the medical field is a lack of affordable, rehabilitation practices for patients with drop foot. Drop foot is a condition where a person is unable to lift the front part of the foot. People with this condition usually swing their legs in a wide arc to avoid dragging the toes, or lift their leg higher than normal. This can cause an abnormal walking gait and force them to expend more energy than usual for mobility. This condition is usually the result of a nerve injury, brain or spinal injuries, and muscle disorders. One of the most common causes of drop foot is stroke. While there are ways for stroke survivors to live with drop foot, they do not provide free range of motion. Drop foot braces keep the foot in a stationary position with the foot lifted. They do not allow plantarflexion movement of any sort to mimic foot push off. The purpose of this experiment is to allow stroke survivors with drop foot to adjust to a normal walking gait. This experiment is also meant to allow movement while minimizing metabolic cost for the subject.
ContributorsBurca, Brian (Author) / Thomas, Sugar (Thesis director) / Sangram, Redkar (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131841-Thumbnail Image.png
Description
This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft

This paper presents the design of a pneumatic actuator for a soft ankle-foot orthosis, called the Multi-material Actuator for Variable Stiffness (MAVS). This pneumatic actuator consists of an inflatable soft fabric actuator fixed between two layers of rigid retainer pieces. The MAVS is designed to be integrated with a soft robotic ankle-foot orthosis (SR-AFO) exosuit to aid in supporting the human ankle in the inversion/eversion directions. This design aims to assist individuals affected with chronic ankle instability (CAI) or other impairments to the ankle joint. The MAVS design is made from compliant fabric materials, layered and constrained by thin rigid retainers to prevent volume increase during actuation. The design was optimized to provide the greatest stiffness and least deflection for a beam positioned as a cantilever with a point load. The design of the MAVS took into account passive stiffness of the actuator when combining rigid and compliant materials so that stiffness is maximized when inflated and minimal when passive. An analytic model of the MAVS was created to evaluate the effects in stiffness observed by varying the ratio in length between the rigid pieces and the soft actuator. The results from the analytic model were compared to experimentally obtained results of the MAVS. The MAVS with the greatest stiffness was observed when the gap between the rigid retainers was smallest and the rigid retainer length was smallest. The MAVS design with the highest stiffness at 100 kPa was determined, which required 26.71 ± 0.06 N to deflect the actuator 20 mm, and a resulting stiffness of 1,335.5 N/m and 9.1% margin of error from the model predictions.
ContributorsHertzell, Tiffany (Author) / Lee, Hyunglae (Thesis director) / Sugar, Thomas (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133398-Thumbnail Image.png
Description
Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic

Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic feedback from the stump-socket interface. Unfortunately, this is not an adequate substitute. Areas of the stump that directly interface with the socket are also prone to painful irritation, which further degrades haptic feedback. The lack of somatosensory feedback from prosthetic legs causes several problems for lower-limb amputees. Previous studies have established that the lack of adequate sensory feedback from prosthetic limbs contributes to poor balance and abnormal gait kinematics. These improper gait kinematics can, in turn, lead to the development of musculoskeletal diseases. Finally, the absence of sensory information has been shown to lead to steeper learning curves and increased rehabilitation times, which hampers amputees from recovering from the trauma. In this study, a novel haptic feedback system for lower-limb amputees was develped, and studies were performed to verify that information presented was sufficiently accurate and precise in comparison to a Bertec 4060-NC force plate. The prototype device consisted of a sensorized insole, a belt-mounted microcontroller, and a linear array of four vibrotactile motors worn on the thigh. The prototype worked by calculating the center of pressure in the anteroposterior plane, and applying a time-discrete vibrotactile stimulus based on the location of the center of pressure.
ContributorsKaplan, Gabriel Benjamin (Author) / Abbas, James (Thesis director) / McDaniel, Troy (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133624-Thumbnail Image.png
Description
This paper presents a system to deliver automated, noninvasive, and effective fine motor rehabilitation through a rhythm-based game using a Leap Motion Controller. The system is a rhythm game where hand gestures are used as input and must match the rhythm and gestures shown on screen, thus allowing a physical

This paper presents a system to deliver automated, noninvasive, and effective fine motor rehabilitation through a rhythm-based game using a Leap Motion Controller. The system is a rhythm game where hand gestures are used as input and must match the rhythm and gestures shown on screen, thus allowing a physical therapist to represent an exercise session involving the user's hand and finger joints as a series of patterns. Fine motor rehabilitation plays an important role in the recovery and improvement of the effects of stroke, Parkinson's disease, multiple sclerosis, and more. Individuals with these conditions possess a wide range of impairment in terms of fine motor movement. The serious game developed takes this into account and is designed to work with individuals with different levels of impairment. In a pilot study, under partnership with South West Advanced Neurological Rehabilitation (SWAN Rehab) in Phoenix, Arizona, we compared the performance of individuals with fine motor impairment to individuals without this impairment to determine whether a human-centered approach and adapting to an user's range of motion can allow an individual with fine motor impairment to perform at a similar level as a non-impaired user.
ContributorsShah, Vatsal Nimishkumar (Author) / McDaniel, Troy (Thesis director) / Tadayon, Ramin (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133975-Thumbnail Image.png
Description
The author examines drug court as a means to reduce recidivism rates for individuals who are addicted to illegal substances. The thesis analyzes the best practices for drug courts in treating addiction and lowering recidivism. In conducting this analysis, the author focuses on the Yuma County Drug Court Program (YCDC).

The author examines drug court as a means to reduce recidivism rates for individuals who are addicted to illegal substances. The thesis analyzes the best practices for drug courts in treating addiction and lowering recidivism. In conducting this analysis, the author focuses on the Yuma County Drug Court Program (YCDC). After discussing the major components of the YCDC program, the author reaches several conclusions about the program. The author's conclusions are based in part on a study analyzing the recidivism rates for individuals who participated in YCDC from January 1, 2007 through December 31, 2010. The author concludes that an effective drug court program requires proper screening and assessment using validated assessment tools that ensure delivery of treatment to individuals with high substance abuse treatment needs. In addition, drug courts must include counseling in both sober individual and group settings, cognitive restructuring, life skills training, and frequent interaction with the drug court judge. The author also concludes that drug courts are more successful when they stress accountability and independence by requiring participants to maintain a stable residence and employment. In YCDC these practices lead to 48.4% of individuals participating in the 18-month program having no criminal justice involvement for a period of three years after their exit from the program. Other important outcomes showed that well over 90% of the participants' drug tests were negative and 87% of the participants were employed. The author concludes that the YCDC program provides a good model for drug courts seeking to lower recidivism.
ContributorsGould, Anna Elaine (Author) / Chisum, Jack (Thesis director) / Carr, Natasha (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134988-Thumbnail Image.png
Description
The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered

The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered exoskeletons have the potential to be used directly in physical therapy or indirectly in research pursuing more effective rehabilitation methods. This paper presents the LiTREAD, a lightweight three degree-of-freedom robotic exoskeletal ankle device. This novel robotic system is designed to be worn on a user's leg and actuate the foot position during treadmill studies. The robot's sagittal plane actuation is complemented by passive virtual axis systems in the frontal and transverse planes. Together, these degrees of freedom allow the device to approximate the full range of motion of the ankle. The virtual axis mechanisms feature locking configurations that will allow the effect of these degrees of freedom on gait dynamics to be studied. Based on a kinematic analysis of the robot's actuation and geometry, it is expected to meet and exceed its torque and speed targets, respectively. The device will fit either leg of a range of subject sizes, and is expected to weigh just 1.3 kg (2.9 lb.). These features and characteristics are designed to minimize the robot's interference with the natural walking motion. Pending validation studies confirming that all design criteria have been met, the LiTREAD prototype that has been constructed will be utilized in various experiments investigating properties of the ankle such as its mechanical impedance. It is hoped that the LiTREAD will yield valuable data that will expand our knowledge of the ankle and aid in the design of future lower-extremity devices.
ContributorsCook, Andrew James Henry (Author) / Lee, Hyunglae (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12