Matching Items (8)
Filtering by

Clear all filters

136200-Thumbnail Image.png
Description
There has been an alarming rise in the prevalence of obesity which has been attributed to the paralleled rise in consumption of high-fat foods. It’s commonly accepted that high-fat diets can lead to increased weight gain, however not all fats have the same physiological action. This study primarily focuses on

There has been an alarming rise in the prevalence of obesity which has been attributed to the paralleled rise in consumption of high-fat foods. It’s commonly accepted that high-fat diets can lead to increased weight gain, however not all fats have the same physiological action. This study primarily focuses on the effect of canola oil, a monounsaturated fat, on energy homeostasis and body composition when it’s given as a supplement to a high-fat diet composed of saturated fatty acid. Rodent models were divided into three dietary groups: 1) low-fat diet (LFD), 2) high-fat diet (HFD) and 3) canola oils supplemented HFD (HF+CAN). After 4 weeks of dietary intervention, samples of epididymal fat, perinephric fat, and liver were analyzed across the three groups to see if the changes in energy homeostasis could be explained by the cellular behavior and composition of these tissues. Interestingly, the supplement of canola oil appeared to reverse the deleterious effects of a saturated fat diet, reverting energy intake, body weight gain and adipose tissue sizes to that (if not lower than that) of the LFD group. The only exception to this effect was the liver: the livers remained larger and fattier than those of the HFD. This occurrence is possibly due to a decrease in free fatty acid uptake in the adipose tissues—resulting in smaller adipose tissue sizes—and increased fatty acid uptake in the liver. The mechanism by which this occurs has yet to be elucidated and will be the primary focus of upcoming studies on the effect of monounsaturated fat on other diets.
ContributorsZuo, Connie Wanda (Author) / Washo-Krupps, Delon (Thesis director) / Deviche, Pierre (Committee member) / Herman, Richard (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137263-Thumbnail Image.png
Description
Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.
ContributorsEusebio, Francis Ang (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137514-Thumbnail Image.png
Description

The purpose of this study, which was done in conjunction with the Arizona Heart Foundation, was to evaluate whether pyridoxine accelerates ulcer wound healing in diabetic patients with ulcers in the lower extremities. In this study, 100 mg of pyridoxine per day was given to patients in the experimental grou

The purpose of this study, which was done in conjunction with the Arizona Heart Foundation, was to evaluate whether pyridoxine accelerates ulcer wound healing in diabetic patients with ulcers in the lower extremities. In this study, 100 mg of pyridoxine per day was given to patients in the experimental group (while they receive normal wound treatment) while patients in the control group received normal treatment of wounds without the pyridoxine. Over time, wound healing was evaluated by photographing and then measuring the size of patients' ulcer wounds on the photographs. Results from the experimental group were compared with those of the control group to evaluate the efficacy of the pyridoxine treatment. In addition, comparisons of the healing rates were made with respect to whether the patients smoked, had hypertension or hypotension, and the patients' body mass indexes. It has been found that there was no statistically significant difference in the mean healing rates between the control groups and experimental groups. In addition, it has been found that smoking, BMI and blood pressure did not have a statistically appreciable effect on the difference in mean healing rates between the control and experimental groups. This is evidence that pyridoxine did not have a statistically significant effect on wound healing rates.

ContributorsHaupt, Shawn Anthony (Author) / Caplan, Michael (Thesis director) / Pauken, Christine (Committee member) / Pagan, Pedro (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137549-Thumbnail Image.png
Description
Currently, the management of diabetes mellitus (DM) involves the monitoring of only blood glucose using self-monitoring blood glucose devices (SMBGs) followed by taking interventional steps, if needed. To increase the amount of information that diabetics can have to base DM care decisions off of, the development of an insulin biosensor

Currently, the management of diabetes mellitus (DM) involves the monitoring of only blood glucose using self-monitoring blood glucose devices (SMBGs) followed by taking interventional steps, if needed. To increase the amount of information that diabetics can have to base DM care decisions off of, the development of an insulin biosensor is explored. Such a biosensor incorporates electrochemical impedance spectroscopy (EIS) to ensure an extremely sensitive platform. Additionally, anti-insulin antibody was immobilized onto the surface of a gold disk working electrode to ensure a highly specific sensing platform as well. EIS measurements were completed with a 5mV sine wave that was swept through the frequency spectrum of 100 kHz to 1 Hz on concentrations of insulin ranging from 0 pM to 100 μM. The frequency at which the interaction between insulin and its antibody was optimized was determined by finding out at which frequency the R2 and slope of the impedance-concentration plot were best. This frequency, otherwise known as the optimal binding frequency, was determined to be 459 Hz. Three separate electrodes were developed and the impedance data for each concentration measured at 459 Hz was averaged and plotted against the LOG (pM insulin) to construct the calibration curve. The response was calculated to be 263.64 ohms/LOG(pM insulin) with an R2 value of 0.89. Additionally, the average RSD was determined to be 19.24% and the LLD was calculated to be 8.47 pM, which is well below the physiological normal range. These results highlight the potential success of developing commercial point-of-care insulin biosensors or multi-marker devices operating with integrated insulin detection.
ContributorsDecke, Zachary William (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137187-Thumbnail Image.png
Description
Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials

Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials regarding diabetes in rural Kenya. The resulting documents can easily be adjusted for use in other developing countries.
ContributorsBuchak, Jacqueline (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134994-Thumbnail Image.png
Description
With dwindling water resources due to drought and other pressures, water utilities are seeking to tap into alternative water sources as a means to improve water sustainability. Reclaimed water consists of treated wastewater and is widely used for non-potable purposes, such as irrigation, both agricultural and recreational. However, the reclaimed

With dwindling water resources due to drought and other pressures, water utilities are seeking to tap into alternative water sources as a means to improve water sustainability. Reclaimed water consists of treated wastewater and is widely used for non-potable purposes, such as irrigation, both agricultural and recreational. However, the reclaimed water distribution system can be subject to substantial regrowth of microorganisms, including opportunistic pathogens, even following rigorous disinfection. Factors that can influence regrowth include temperature, organic carbon levels, disinfectant type, and the time transported (i.e., water age) in the system. One opportunistic pathogen (OP) that is critical to understanding microbial activity in both reclaimed and drinking water distribution systems is Acanthamoeba. In order to better understand the potential for this amoeba to proliferate in reclaimed water systems and influence other OPs, a simulated reclaimed water distribution system was studied. The objective of this study was to compare the prevalence of Acanthamoeba and one of its endosymbionts, Legionella, across varying assimilable organic carbon (AOC) levels, temperatures, disinfectants, and water ages in a simulated reclaimed water distribution system. The results of the study showed that cooler temperatures, larger water age, and chlorine conditions yielded the lowest detection of Acanthamoeba gene copies per mL or cm2 for bulk water and biofilm samples, respectively.
ContributorsDonaldson, Kandace (Author) / Ankeny, Casey (Thesis director) / Edwards, Marc (Committee member) / Pruden, Amy (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137735-Thumbnail Image.png
Description
The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral

The pathogenesis of type 1 diabetes (T1D) is still not fully understood in the scientific community. Evidence has shown that viral infections are one of the important environmental factors associated with the disease development. Seven of the top T1D related viruses were selected to study the prevalence of viral humoral response in T1D patients using our innovative protein array platform called Nucleic Acid Programmable Protein Array (NAPPA). In this study, each viral gene was individually captured using various PCR based techniques, cloned into a protein expression vector, and assembled as the first version of T1D viral protein array. Humoral responses of IgG, IgA, and IgM were examined. Although each class of immunoglobulin generated a wide-range of reactivity, responses to various viral proteins from different proteins were observed. In summary, we captured most of the T1D related viral genes, established viral protein expression on the protein array, and displayed the serum response on the viral protein array. The successful progress will help to fulfill the long term goal of testing the viral infection hypothesis in T1D development.
ContributorsDavis, Amy Darlene (Author) / LaBaer, Joshua (Thesis director) / Qiu, Ji (Committee member) / Desi, Paul (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2013-05
147647-Thumbnail Image.png
Description

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage their carbohydrate counting. This early model has a 68.3% accuracy of identifying 101 different food classes. A more refined model in future work could be deployed into a mobile application to identify food the user is about to consume and log it for easier carbohydrate counting.

ContributorsCarreto, Cesar (Author) / Pizziconi, Vincent (Thesis director) / Vernon, Brent (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05