Matching Items (11)
Filtering by

Clear all filters

135452-Thumbnail Image.png
Description
According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects.

According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects. Lifestyle and diet modifications can be just as effective as medications in helping to improve glycemic control, and prevent diabetes or improve the condition in those who have it. Studies have demonstrated that consuming vinegar with carbohydrates can positively impact postprandial glycemia in diabetic and healthy individuals. Continuous vinegar intake with meals may even reduce fasting blood glucose levels. Since vinegar is a primary ingredient in mustard, the purpose of this study was to determine if mustard consumption with a carbohydrate-rich meal (bagel and fruit juice) had an effect on the postprandial blood glucose levels of subjects. The results showed that mustard improved glycemia by 17% when subjects consumed the meal with mustard as opposed to the control. A wide variety of vinegars exists. The defining ingredient in all vinegars is acetic acid, behind the improvement in glycemic response observed with vinegar ingestion. Vinegar-containing foods range from mustard, to vinaigrette dressings, to pickled foods. The benefits of vinegar ingestion with carbohydrates are dose-dependent, meaning that adding even small amounts to meals can help. Making a conscious effort to incorporate these foods into meals, in addition to an overall healthy lifestyle, could provide an additional tool for diabetics and nondiabetics alike to consume carbohydrates in a healthier manner.
ContributorsJimenez, Gabriela (Author) / Johnston, Carol (Thesis director) / Lespron, Christy (Committee member) / School of Nutrition and Health Promotion (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137263-Thumbnail Image.png
Description
Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.
ContributorsEusebio, Francis Ang (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137549-Thumbnail Image.png
Description
Currently, the management of diabetes mellitus (DM) involves the monitoring of only blood glucose using self-monitoring blood glucose devices (SMBGs) followed by taking interventional steps, if needed. To increase the amount of information that diabetics can have to base DM care decisions off of, the development of an insulin biosensor

Currently, the management of diabetes mellitus (DM) involves the monitoring of only blood glucose using self-monitoring blood glucose devices (SMBGs) followed by taking interventional steps, if needed. To increase the amount of information that diabetics can have to base DM care decisions off of, the development of an insulin biosensor is explored. Such a biosensor incorporates electrochemical impedance spectroscopy (EIS) to ensure an extremely sensitive platform. Additionally, anti-insulin antibody was immobilized onto the surface of a gold disk working electrode to ensure a highly specific sensing platform as well. EIS measurements were completed with a 5mV sine wave that was swept through the frequency spectrum of 100 kHz to 1 Hz on concentrations of insulin ranging from 0 pM to 100 μM. The frequency at which the interaction between insulin and its antibody was optimized was determined by finding out at which frequency the R2 and slope of the impedance-concentration plot were best. This frequency, otherwise known as the optimal binding frequency, was determined to be 459 Hz. Three separate electrodes were developed and the impedance data for each concentration measured at 459 Hz was averaged and plotted against the LOG (pM insulin) to construct the calibration curve. The response was calculated to be 263.64 ohms/LOG(pM insulin) with an R2 value of 0.89. Additionally, the average RSD was determined to be 19.24% and the LLD was calculated to be 8.47 pM, which is well below the physiological normal range. These results highlight the potential success of developing commercial point-of-care insulin biosensors or multi-marker devices operating with integrated insulin detection.
ContributorsDecke, Zachary William (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
133053-Thumbnail Image.png
Description
A point of care glucose sensor using electrochemical impedance spectroscopy (EIS) with a glutaraldehyde-linked enzyme shows promise as an effective biosensor platform. This report details the characterization of various factors on optimal binding frequency (OBF) and sensor performance to better prepare the sensor for future experimentation. Utilizing a screen printed

A point of care glucose sensor using electrochemical impedance spectroscopy (EIS) with a glutaraldehyde-linked enzyme shows promise as an effective biosensor platform. This report details the characterization of various factors on optimal binding frequency (OBF) and sensor performance to better prepare the sensor for future experimentation. Utilizing a screen printed carbon electrode, the necessary amount of glucose oxidase was determined to be 10 mg/mL. Binding time trials ranging from 1-3 minutes demonstrated that 1.5 minutes was the optimal binding time. This timeframe produced the strongest impedance response at each glucose concentration. Using this enzyme concentration and binding time, the native OBF of the biosensor was found to be 1.18 Hz using vector analysis. Temperature testing showed little change in OBF in sensors exposed to 4 \u00B0C through 43.3 \u00B0C. Only exposure to 60 \u00B0C resulted in rapid OBF change which was likely due to glucose oxidase becoming denatured. Humidity tests showed little change in OBF and sensor performance between sensors prepared at the humidities of 7.5%, 10.625% and 16.5% humidity. Alternatively, solutions containing common interference molecules such as uric acid, acetaminophen, and ascorbic acid resulted in a highly shifted OBF and drastically reduced signal.
ContributorsMatloff, Daniel (Co-author) / Khanwalker, Mukund (Co-author) / Johns, Jared (Co-author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Lin, Chi (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
153648-Thumbnail Image.png
Description
The effects of iron and chromium blood concentrations have been linked to blood glucose control in diabetics. It is suggested that iron causes oxidative stress in the beta cells of the pancreas and adipocytes creating insulin insufficiency and resistance. Chromium is believed to increase the action of insulin

The effects of iron and chromium blood concentrations have been linked to blood glucose control in diabetics. It is suggested that iron causes oxidative stress in the beta cells of the pancreas and adipocytes creating insulin insufficiency and resistance. Chromium is believed to increase the action of insulin through its biologically active molecule chromodulin. Both of these mechanisms are not clear. This 20 week case study tests the feasibility of combining iron depletion therapy followed by chromium supplementation to improve insulin sensitivity. This single case study followed a protocol of two blood donations separated by eight weeks followed by chromium supplementation of 250 µg of chromium picolinate once a day four weeks after the second blood donation. Fasting blood draws were taken at baseline, post blood draws and pre and post chromium supplementation. Results were not promising for the first hypothesis of lowering HbA1c, but the results were promising for the second hypothesis of improving insulin sensitivity by lowering the HOMA score.
ContributorsJarrett, Nia (Author) / Johnston, Carol (Thesis advisor) / Lespron, Christy (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2015
155582-Thumbnail Image.png
Description
Curcumin is an active ingredient of Curcuma longa (Turmeric) and is studied extensively for its antioxidant, anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer properties. The purpose of this study was to examine the effects of turmeric on blood glucose and plasma insulin levels. The study utilized a placebo-controlled, randomized cross-over

Curcumin is an active ingredient of Curcuma longa (Turmeric) and is studied extensively for its antioxidant, anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer properties. The purpose of this study was to examine the effects of turmeric on blood glucose and plasma insulin levels. The study utilized a placebo-controlled, randomized cross-over design with participants serving as their own control. Eight glucose tolerant healthy participants completed the full study. Three-weeks washout period was kept in between six-weeks. Prior to the test meal day, participants were asked to eat a bagel with their evening dinner. During the day of the test meal, participants reported to the test site in a rested and fasted state. Participants completed mashed potato meal tests with 500 mg of turmeric powder or placebo mixed in water, followed by 3 weeks of 500 mg turmeric or placebo supplement ingestion at home. During this visit blood glucose finger picks were obtained at fasting, 30, 60, 90, and 120 min post-meal. Blood plasma insulin at fasting and at 30 min after the test meal were also obtained. During week 4, participants reported to the test site in a rested and fasted state where fasting blood glucose finger pricks and blood plasma insulin were measured. During week 5 to 7, participants were given a washout time-period. During week 8, entire process from week 1 to 4 was repeated by interchanging the groups. Compared to placebo, reduction in postprandial blood glucose and insulin response were non-significant after ingestion of turmeric powder. Taking turmeric for 3 weeks had no change in blood glucose and insulin levels. However, taking turmeric powder supplements for 3 weeks, showed a 4.4% reduction in blood glucose. Change in insulin at 30 min were compared with baseline insulin level showing no significant change between placebo and turmeric group. Fasting insulin after 3-weeks consumption of turmeric did not show any significant change, but showed a larger effect size (0.08). Future research is essential to examine the turmeric powder supplement benefits over a long period of time in healthy adults and whether it is beneficial in preventing the occurrence of type 2 diabetes.
ContributorsOza, Namrata (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2017
155565-Thumbnail Image.png
Description
The American Diabetes Association reports that diabetes costs $322 billion annually and affects 29.1 million Americans. The high out-of-pocket cost of managing diabetes can lead to noncompliance causing serious and expensive complications. There is a large market potential for a more cost-effective alternative to the current market standard of screen-printed

The American Diabetes Association reports that diabetes costs $322 billion annually and affects 29.1 million Americans. The high out-of-pocket cost of managing diabetes can lead to noncompliance causing serious and expensive complications. There is a large market potential for a more cost-effective alternative to the current market standard of screen-printed self-monitoring blood glucose (SMBG) strips. Additive manufacturing, specifically 3D printing, is a developing field that is growing in popularity and functionality. 3D printers are now being used in a variety of applications from consumer goods to medical devices. Healthcare delivery will change as the availability of 3D printers expands into patient homes, which will create alternative and more cost-effective methods of monitoring and managing diseases, such as diabetes. 3D printing technology could transform this expensive industry. A 3D printed sensor was designed to have similar dimensions and features to the SMBG strips to comply with current manufacturing standards. To make the sensor electrically active, various conductive filaments were tested and the conductive graphene filament was determined to be the best material for the sensor. Experiments were conducted to determine the optimal print settings for printing this filament onto a mylar substrate, the industry standard. The reagents used include a mixture of a ferricyanide redox mediator and flavin adenine dinucleotide dependent glucose dehydrogenase. With these materials, each sensor only costs $0.40 to print and use. Before testing the 3D printed sensor, a suitable design, voltage range, and redox probe concentration were determined. Experiments demonstrated that this novel 3D printed sensor can accurately correlate current output to glucose concentration. It was verified that the sensor can accurately detect glucose levels from 25 mg/dL to 400 mg/dL, with an R2 correlation value as high as 0.97, which was critical as it covered hypoglycemic to hyperglycemic levels. This demonstrated that a 3D-printed sensor was created that had characteristics that are suitable for clinical use. This will allow diabetics to print their own test strips at home at a much lower cost compared to SMBG strips, which will reduce noncompliance due to the high cost of testing. In the future, this technology could be applied to additional biomarkers to measure and monitor other diseases.
ContributorsAdams, Anngela (Author) / LaBelle, Jeffrey (Thesis advisor) / Pizziconi, Vincent (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2017
148228-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsMishra, Shambhavi (Co-author) / Numani, Asfia (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jonathan (Committee member) / Economics Program in CLAS (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148229-Thumbnail Image.png
Description

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing

2D fetal echocardiography (ECHO) can be used for monitoring heart development in utero. This study’s purpose is to empirically model normal fetal heart growth and function changes during development by ECHO and compare these to fetuses diagnosed with and without cardiomyopathy with diabetic mothers. There are existing mathematical models describing fetal heart development but they warrant revalidation and adjustment. 377 normal fetuses with healthy mothers, 98 normal fetuses with diabetic mothers, and 37 fetuses with cardiomyopathy and diabetic mothers had their cardiac structural dimensions, cardiothoracic ratio, valve flow velocities, and heart rates measured by fetal ECHO in a retrospective chart review. Cardiac features were fitted to linear functions, with respect to gestational age, femur length, head circumference, and biparietal diameter and z-scores were created to model normal fetal growth for all parameters. These z-scores were used to assess what metrics had no difference in means between the normal fetuses of both healthy and diabetic mothers, but differed from those diagnosed with cardiomyopathy. It was found that functional metrics like mitral and tricuspid E wave and pulmonary velocity could be important predictors for cardiomyopathy when fitted by gestational age, femur length, head circumference, and biparietal diameter. Additionally, aortic and tricuspid annulus diameters when fitted to estimated gestational age showed potential to be predictors for fetal cardiomyopathy. While the metrics overlapped over their full range, combining them together may have the potential for predicting cardiomyopathy in utero. Future directions of this study will explore creating a classifier model that can predict cardiomyopathy using the metrics assessed in this study.

ContributorsNumani, Asfia (Co-author) / Mishra, Shambhavi (Co-author) / Sweazea, Karen (Thesis director) / Plasencia, Jon (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147647-Thumbnail Image.png
Description

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage their carbohydrate counting. This early model has a 68.3% accuracy of identifying 101 different food classes. A more refined model in future work could be deployed into a mobile application to identify food the user is about to consume and log it for easier carbohydrate counting.

ContributorsCarreto, Cesar (Author) / Pizziconi, Vincent (Thesis director) / Vernon, Brent (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05