Matching Items (4)
Filtering by

Clear all filters

135452-Thumbnail Image.png
Description
According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects.

According to the CDC, diabetes is the 7th leading cause of death in the U.S. and rates are continuing to rise nationally and internationally. Chronically elevated blood glucose levels can lead to type 2 diabetes and other complications. Medications can be used to treat diabetes, but often have side effects. Lifestyle and diet modifications can be just as effective as medications in helping to improve glycemic control, and prevent diabetes or improve the condition in those who have it. Studies have demonstrated that consuming vinegar with carbohydrates can positively impact postprandial glycemia in diabetic and healthy individuals. Continuous vinegar intake with meals may even reduce fasting blood glucose levels. Since vinegar is a primary ingredient in mustard, the purpose of this study was to determine if mustard consumption with a carbohydrate-rich meal (bagel and fruit juice) had an effect on the postprandial blood glucose levels of subjects. The results showed that mustard improved glycemia by 17% when subjects consumed the meal with mustard as opposed to the control. A wide variety of vinegars exists. The defining ingredient in all vinegars is acetic acid, behind the improvement in glycemic response observed with vinegar ingestion. Vinegar-containing foods range from mustard, to vinaigrette dressings, to pickled foods. The benefits of vinegar ingestion with carbohydrates are dose-dependent, meaning that adding even small amounts to meals can help. Making a conscious effort to incorporate these foods into meals, in addition to an overall healthy lifestyle, could provide an additional tool for diabetics and nondiabetics alike to consume carbohydrates in a healthier manner.
ContributorsJimenez, Gabriela (Author) / Johnston, Carol (Thesis director) / Lespron, Christy (Committee member) / School of Nutrition and Health Promotion (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136269-Thumbnail Image.png
Description
The development of the Diabetic Physiological state is influenced by the Receptor for Advanced Glycation End Products (RAGE). This receptor was discovered in 1992, and the accumulation of research on this subject has been extensive. Structural characterization studies of the RAGE protein have shown that it is a transmembrane protein

The development of the Diabetic Physiological state is influenced by the Receptor for Advanced Glycation End Products (RAGE). This receptor was discovered in 1992, and the accumulation of research on this subject has been extensive. Structural characterization studies of the RAGE protein have shown that it is a transmembrane protein that binds a number of different motile ligands. The diversity of ligands that can attach to the binding domain is the primary factor that allows for RAGE to exhibit its wide-range effects on host cells. Two different studies were completed: one study dealt with the role of IAPP in beta cell death, and the second study was related to RAGE influence on cardiomyocytes and, more specifically, it was related to cardiac cell death. After the completion of the two studies, a comprehensive report was written for each topic. The two papers were merged into a single document. Molecular studies are important for understanding the underlying mechanisms that motivate pathophysiological presentation. In addition to a molecular understanding of the development of diabetes, a clinical research study was completed through the examination of appropriate literature sources. This clinical aspect allowed for the progression of different phases in the research process. A relationship between vinegar and lower plasma glucose was found. The exact mechanism behind this relationship will be studied in the future.
ContributorsGonzalez, Matthew Joseph (Author) / Johnston, Carol (Thesis director) / Collins, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
136430-Thumbnail Image.png
Description
Background: The prevalence of childhood obesity has disproportionately affected Latino youth. This increase in obesity is seen with an increased incidence of Type 2 Diabetes. Objective/Hypothesis: The objective of this study was to determine the effects of a community based lifestyle intervention, which encompassed nutrition education and physical activity, on

Background: The prevalence of childhood obesity has disproportionately affected Latino youth. This increase in obesity is seen with an increased incidence of Type 2 Diabetes. Objective/Hypothesis: The objective of this study was to determine the effects of a community based lifestyle intervention, which encompassed nutrition education and physical activity, on diabetes risk in pre-diabetic Latino adolescents. Diabetes risk was assessed using pancreatic beta cell function as measured by proinsulin: insulin ratio. It was hypothesized that reductions in added sugar intake and reductions in saturated fat intake will be associated with improved beta cell function as measured by proinsulin: insulin ratio. Study Design/Participants: In this quasi-experimental study design, n=17 pre-diabetic Latino adolescents between the ages of 14-16 participated in a lifestyle intervention. Methods: Anthropometric measurements (weight, height, waist circumference, BMI) and body composition (body %) were determined for all participants at baseline and post intervention. Fasting proinsulin (PI), fasting insulin (I) and 2hr-OGTT were also determined. Dietary intake was measured using the Block Kids Food Screener for kids ages 2-17y (2007). The intervention consisted of nutrition education classes and physical activity sessions for 12 weeks. Results: We found significant decreases in body fat % following the intervention. There were no significant decreases in fasting insulin. Proinsulin significantly decreased. However we did no see a significant change in PI/I (p= 0.003). Dietary behaviors of added sugar (p=0.03) and saturated fat (p=0.04) showed significant decreases. No significant associations were found between changes in added sugar to improvements in beta cell function, r=0.072, p-value= 0.7. We also did not observe significant associations between reductions in saturated fat intake and improvements in beta cell function, r=0.152, p-value =0.6. Conclusions: We concluded that a 12-week lifestyle intervention resulted in significant changes in dietary behaviors. These changes were not however associated with improvements in beta cell function.
ContributorsKaur, Manroop (Author) / Shaibi, Gabriel (Thesis director) / Bruening, Meredith (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2015-05
132124-Thumbnail Image.png
Description
As the 7th leading cause of death in the world, with over 1.6 millions deaths attributed to it in 2016 alone, diabetes mellitus has been a rising global health concern. Type 1 diabetes is caused by lack of insulin production whereas type 2 diabetes is caused by insulin resistance. Both

As the 7th leading cause of death in the world, with over 1.6 millions deaths attributed to it in 2016 alone, diabetes mellitus has been a rising global health concern. Type 1 diabetes is caused by lack of insulin production whereas type 2 diabetes is caused by insulin resistance. Both types of diabetes lead to increased glucose levels in the body if left untreated. This, in turn, leads to the development of a host of complications, one of which is ischemic heart disease. Accounting for the death of 16% of the world’s population, ischemic heart disease has been the leading cause of death since 2000. As of 2019, deaths from this disease have risen from 2 million to over 8.9 million globally. While medicine exists to counter the negative outcomes of diabetes mellitus, lower income nations suffer from the lack of availability and high costs of these medications. Therefore, this systematic review was performed to determine whether a non-medicinal treatment could provide similar therapeutic benefits for individuals with diabetes. Genistein is a phytoestrogen found in soy-based products, which has been potentially linked with preventing diabetes and improving diabetes-related symptoms such as hyperglycemia and abnormal insulin levels. We searched PubMed and SCOPUS using the terms ‘genistein’, ‘diabetes’, and ‘glucose’ and identified 32 peer-reviewed articles. In general, preclinical studies demonstrate that genistein decreases body weight as well as circulating glucose and triglycerides concentrations while increasing insulin levels and insulin sensitivity. It also delayed the onset of type 1 and type 2 diabetes. In contrast, clinical studies of genistein in general reported no significant relationship between genistein and body mass, circulating glucose, serum insulin, A1C concentrations, or onset of type 1 diabetes. However, genistein was found to improve insulin sensitivity, delay type 2 diabetes onset and improve serum triglyceride levels. In summary, preclinical and clinical studies suggest that genistein may help delay onset of type 2 diabetes and improve several symptoms associated with the disease. By translating these findings into clinical settings, genistein may offer a cost effective natural approach at mitigating complications associated with diabetes, although additional research is required to confirm these findings.
ContributorsJain, Rijul (Author) / Sweazea, Karen (Thesis director) / Al-Nakkash, Layla (Committee member) / Bolch, Charlotte (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-04-16