Matching Items (20)
Filtering by

Clear all filters

135402-Thumbnail Image.png
Description
It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of

It is unknown which regions of the brain are most or least active for golfers during a peak performance state (Flow State or "The Zone") on the putting green. To address this issue, electroencephalographic (EEG) recordings were taken on 10 elite golfers while they performed a putting drill consisting of hitting nine putts spaced uniformly around a hole each five feet away. Data was collected at three time periods, before, during and after the putt. Galvanic Skin Response (GSR) measurements were also recorded on each subject. Three of the subjects performed a visualization of the same putting drill and their brain waves and GSR were recorded and then compared with their actual performance of the drill. EEG data in the Theta (4 \u2014 7 Hz) bandwidth and Alpha (7 \u2014 13 Hz) bandwidth in 11 different locations across the head were analyzed. Relative power spectrum was used to quantify the data. From the results, it was found that there is a higher magnitude of power in both the theta and alpha bandwidths for a missed putt in comparison to a made putt (p<0.05). It was also found that there is a higher average power in the right hemisphere for made putts. There was not a higher power in the occipital region of the brain nor was there a lower power level in the frontal cortical region during made putts. The hypothesis that there would be a difference between the means of the power level in performance compared to visualization techniques was also supported.
ContributorsCarpenter, Andrea (Co-author) / Hool, Nicholas (Co-author) / Muthuswamy, Jitendran (Thesis director) / Crews, Debbie (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
133425-Thumbnail Image.png
Description
Spasticity is a neurological disorder in which a target group of muscles remain in a contracted state. In addition to interfering with the function of these muscles, spasticity causes chronic pain and discomfort. Often found in patients with cerebral palsy, multiple sclerosis, or stroke history, spasticity affects an estimated twelve

Spasticity is a neurological disorder in which a target group of muscles remain in a contracted state. In addition to interfering with the function of these muscles, spasticity causes chronic pain and discomfort. Often found in patients with cerebral palsy, multiple sclerosis, or stroke history, spasticity affects an estimated twelve million people worldwide. Not only does spasticity cause discomfort and loss of function, but the condition can lead to contractures, or permanent shortenings of the muscle and connective tissue, if left untreated. Current treatments for spasticity are primarily different forms of muscle relaxant pharmaceuticals. Almost all of these drugs, however, carry unwanted side effects, including total muscle weakness, liver toxicity, and possible dependence. Additionally, kinesiotherapy, conducted by physical therapists at rehabilitation clinics, is often prescribed to people suffering from spasticity. Since kinesiotherapy requires frequent practice to be effective, proper treatment requires constant professional care and clinic appointments, discouraging patient compliance. Consequently, a medical device that could automate relief for spasticity outside of a clinic is desired in the market. While a number of different dynamic splints for hand spasticity are currently on the market, research has shown that these devices, which simply brace the hand in an extended position, do not work through any mechanism to decrease spastic tension over time. Two methods of temporarily reducing spasticity that have been observed in clinical studies are cryotherapy, or the decrease of temperature on a target area, and electrotherapy, which is the delivery of regulated electrical pulses to a target area. It is possible that either of these mechanisms could be incorporated into a medical device aimed toward spastic relief. In fact, electrotherapy is used in a current market device called the SaeboStim, which is advertised to help stroke recovery and spastic reduction. The purpose of this paper is to evaluate the viability of a potential spastic relief device that utilizes cryotherapy to a current and closest competitor, the SaeboStim. The effectiveness of each device in relieving spasticity is reviewed. The two devices are also compared on their ability to address primary customer needs, such as convenience, ease of use, durability, and price. Overall, it is concluded that the cryotherapy device more effectively relieves hand spasticity in users, although the SaeboStim's smaller size and better convenience gives it market appeal, and reveals some of the shortcomings in the preliminary design of the cryotherapy device.
ContributorsWiedeman, Christopher Blaise (Author) / Kleim, Jeffrey (Thesis director) / Buneo, Christopher (Committee member) / W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133734-Thumbnail Image.png
Description
Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment

Prior expectations can bias evaluative judgments of sensory information. We show that information about a performer's status can bias the evaluation of musical stimuli, reflected by differential activity of the ventromedial prefrontal cortex (vmPFC). Moreover, we demonstrate that decreased susceptibility to this confirmation bias is (a) accompanied by the recruitment of and (b) correlated with the white-matter structure of the executive control network, particularly related to the dorsolateral prefrontal cortex (dlPFC). By using long-duration musical stimuli, we were able to track the initial biasing, subsequent perception, and ultimate evaluation of the stimuli, examining the full evolution of these biases over time. Our findings confirm the persistence of confirmation bias effects even when ample opportunity exists to gather information about true stimulus quality, and underline the importance of executive control in reducing bias.
ContributorsAydogan, Goekhan (Co-author, Committee member) / Flaig, Nicole (Co-author) / Larg, Edward W. (Co-author) / Margulis, Elizabeth Hellmuth (Co-author) / McClure, Samuel (Co-author, Thesis director) / Nagishetty Ravi, Srekar Krishna (Co-author) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137263-Thumbnail Image.png
Description
Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.
ContributorsEusebio, Francis Ang (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137514-Thumbnail Image.png
Description

The purpose of this study, which was done in conjunction with the Arizona Heart Foundation, was to evaluate whether pyridoxine accelerates ulcer wound healing in diabetic patients with ulcers in the lower extremities. In this study, 100 mg of pyridoxine per day was given to patients in the experimental grou

The purpose of this study, which was done in conjunction with the Arizona Heart Foundation, was to evaluate whether pyridoxine accelerates ulcer wound healing in diabetic patients with ulcers in the lower extremities. In this study, 100 mg of pyridoxine per day was given to patients in the experimental group (while they receive normal wound treatment) while patients in the control group received normal treatment of wounds without the pyridoxine. Over time, wound healing was evaluated by photographing and then measuring the size of patients' ulcer wounds on the photographs. Results from the experimental group were compared with those of the control group to evaluate the efficacy of the pyridoxine treatment. In addition, comparisons of the healing rates were made with respect to whether the patients smoked, had hypertension or hypotension, and the patients' body mass indexes. It has been found that there was no statistically significant difference in the mean healing rates between the control groups and experimental groups. In addition, it has been found that smoking, BMI and blood pressure did not have a statistically appreciable effect on the difference in mean healing rates between the control and experimental groups. This is evidence that pyridoxine did not have a statistically significant effect on wound healing rates.

ContributorsHaupt, Shawn Anthony (Author) / Caplan, Michael (Thesis director) / Pauken, Christine (Committee member) / Pagan, Pedro (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137549-Thumbnail Image.png
Description
Currently, the management of diabetes mellitus (DM) involves the monitoring of only blood glucose using self-monitoring blood glucose devices (SMBGs) followed by taking interventional steps, if needed. To increase the amount of information that diabetics can have to base DM care decisions off of, the development of an insulin biosensor

Currently, the management of diabetes mellitus (DM) involves the monitoring of only blood glucose using self-monitoring blood glucose devices (SMBGs) followed by taking interventional steps, if needed. To increase the amount of information that diabetics can have to base DM care decisions off of, the development of an insulin biosensor is explored. Such a biosensor incorporates electrochemical impedance spectroscopy (EIS) to ensure an extremely sensitive platform. Additionally, anti-insulin antibody was immobilized onto the surface of a gold disk working electrode to ensure a highly specific sensing platform as well. EIS measurements were completed with a 5mV sine wave that was swept through the frequency spectrum of 100 kHz to 1 Hz on concentrations of insulin ranging from 0 pM to 100 μM. The frequency at which the interaction between insulin and its antibody was optimized was determined by finding out at which frequency the R2 and slope of the impedance-concentration plot were best. This frequency, otherwise known as the optimal binding frequency, was determined to be 459 Hz. Three separate electrodes were developed and the impedance data for each concentration measured at 459 Hz was averaged and plotted against the LOG (pM insulin) to construct the calibration curve. The response was calculated to be 263.64 ohms/LOG(pM insulin) with an R2 value of 0.89. Additionally, the average RSD was determined to be 19.24% and the LLD was calculated to be 8.47 pM, which is well below the physiological normal range. These results highlight the potential success of developing commercial point-of-care insulin biosensors or multi-marker devices operating with integrated insulin detection.
ContributorsDecke, Zachary William (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
137187-Thumbnail Image.png
Description
Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials

Diabetes is a growing epidemic in developing countries, specifically in rural Kenya. In addition to the high cost of glucose testing, many diabetics in Kenya do not understand the importance of testing their blood glucose, let alone the nature of the disease. This project addresses the insufficiency of educational materials regarding diabetes in rural Kenya. The resulting documents can easily be adjusted for use in other developing countries.
ContributorsBuchak, Jacqueline (Author) / Caplan, Michael (Thesis director) / Snyder, Jan (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
135233-Thumbnail Image.png
Description
As the rates of anxiety in adults rapidly swell, new and creative treatment methods become increasingly relevant. Individuals with an anxiety disorder may experience challenging symptoms that interfere with daily activities and impede academic and social success. The purpose of this project is to design and engineer a portable heart

As the rates of anxiety in adults rapidly swell, new and creative treatment methods become increasingly relevant. Individuals with an anxiety disorder may experience challenging symptoms that interfere with daily activities and impede academic and social success. The purpose of this project is to design and engineer a portable heart rate monitor that communicates with an iOS mobile application for use by individuals suffering from anxiety or panic disorders. The proposed device captures the innovation of combining biosensor feedback with new, creative therapy methods on a convenient iOS application. The device is implemented as an Arduino Uno which translates radial pulse information onto an LCD screen from a wristband. Additionally, the iOS portion uses a slow expanding and collapsing animation to guide the user through a calming breathing exercise while displaying their pulse in beats per minute. The user's awareness or his or her ability to control one's own physiological state supports and facilitates an additional form of innovative therapy. The current design of the iOS app uses a random-number generator between 40 to 125 to imitate a realistic heart rate. If the value is less than 60 or greater than 105, the number is printed in red; otherwise the heart rate is displayed in green. Future versions of this device incorporate bluetooth capabilities and potentially additional synchronous methods of therapy. The information presented in this research provides an excellent example of the integrations of new mobile technology and healthcare.
ContributorsTadayon, Ramesh (Author) / Muthuswamy, Jit (Thesis director) / Towe, Bruce (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134416-Thumbnail Image.png
Description
Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems

Engineers have a strong influence on everyday lives, ranging from electronics and trains to chemicals and organs [1]. However, in the United States, there is a large knowledge gap in the roles of engineers, especially in K-12 students [2] [3]. The National Academy of Engineering (NAE) recognizes the current problems in engineering, such as the dominance of white males in the field and the amount of education needed to become a successful engineer [4]. Therefore, the NAE encourages that the current engineering community begin to expose the younger generations to the real foundation of engineering: problem-solving [4]. The objective of this thesis is to minimize the knowledge gap by assessing the current perception of engineering amongst middle school and high school students and improving it through engaging and interactive presentations and activities that build upon the students’ problem-solving abilities.

The project was aimed towards middle school and high school students, as this is the estimated level where they learn biology and chemistry—key subject material in biomedical engineering. The high school students were given presentations and activities related to biomedical engineering. Additionally, within classrooms, posters were presented to middle school students. The content of the posters were students of the biomedical engineering program at ASU, coming from different ethnic backgrounds to try and evoke within the middle school students a sense of their own identity as a biomedical engineer. To evaluate the impact these materials had on the students, a survey was distributed before the students’ exposure to the materials and after that assesses the students’ understanding of engineering at two different time points. A statistical analysis was conducted with Microsoft Excel to assess the influence of the activity and/or presentation on the students’ understanding of engineering.
ContributorsLlave, Alison Rose (Author) / Ganesh, Tirupalavanam (Thesis director) / Parker, Hope (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132964-Thumbnail Image.png
Description
In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve

In epilepsy, malformations that cause seizures often require surgery. The purpose of this research is to join forces with the Multi-Center Epilepsy Lesion Detection (MELD) project at University College London (UCL) in order to improve the process of detecting lesions in patients with drug-resistant epilepsy. This, in turn, will improve surgical outcomes via more structured surgical planning. It is a global effort, with more than 20 sites across 5 continents. The targeted populations for this study include patients whose epilepsy stems from Focal Cortical Dysplasia. Focal Cortical Dysplasia is an abnormality of cortical development, and causes most of the drug-resistant epilepsy. Currently, the creators of MELD have developed a set of protocols which wrap various
commands designed to streamline post-processing of MRI images. Using this partnership, the Applied Neuroscience and Technology Lab at PCH has been able to complete production of a post-processing pipeline which integrates locally sourced smoothing techniques to help identify lesions in patients with evidence of Focal Cortical Dysplasia. The end result is a system in which a patient with epilepsy may experience more successful post-surgical results due to the
combination of a lesion detection mechanism and the radiologist using their trained eye in the presurgical stages. As one of the main points of this work is the global aspect of it, Barrett thesis funding was dedicated for a trip to London in order to network with other MELD project collaborators. This was a successful trip for the project as a whole in addition to this particular thesis. The ability to troubleshoot problems with one another in a room full of subject matter
experts allowed for a high level of discussion and learning. Future work includes implementing machine learning approaches which consider all morphometry parameters simultaneously.
ContributorsHumphreys, Zachary William (Author) / Kodibagkar, Vikram (Thesis director) / Foldes, Stephen (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05