Matching Items (9)
Filtering by

Clear all filters

148450-Thumbnail Image.png
Description

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The purpose of this thesis is to draft a protocol to study adaptive therapy in a preclinical model of breast cancer on MCF7, estrogen receptor-positive, cells that have evolved resistance to fulvestrant and palbociclib (MCF7 R). In this study, we used two protocols: drug dose adjustment and intermittent therapy. The MCF7 R cell lines were injected into the mammary fat pads of 11-month-old NOD/SCID gamma (NSG) mice (18 mice) which were then treated with gemcitabine.<br/>The results of this experiment did not provide complete information because of the short-term treatments. In addition, we saw an increase in the tumor size of a few of the treated mice, which could be due to the metabolism of the drug at that age, or because of the difference in injection times. Therefore, these adaptive therapy protocols on hormone-refractory breast cancer cell lines will be repeated on young, 6-week old mice by injecting the cell lines at the same time for all mice, which helps the results to be more consistent and accurate.

ContributorsConti, Aviona (Author) / Maley, Carlo (Thesis director) / Blattman, Joseph (Committee member) / Seyedi, Sareh (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136345-Thumbnail Image.png
Description
The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new blood capillaries that are necessary for the survival of a

The purpose of this project is to explore the benefit of using prodrugs in chemotherapy, as well as to explain the concept of angiogenesis and the importance of this process to tumor development. Angiogenesis is the formation of new blood capillaries that are necessary for the survival of a tumor, as a tumor cannot grow larger than 1-2 mm3 without developing its own blood supply. Vascular disrupting agents, such as iodocombstatin, a derivative of combretastatin, can be used to effectively cut off the blood supply to a growing neoplasm, effectively inhibiting the supply of oxygen and nutrients needed for cell division Thus, VDAs have a very important implication in terms of the future of chemotherapy. A prodrug, defined as an agent that is inactive in the body until metabolized to yield the drug itself, was synthesized by combining iodocombstatin with a β-glucuronide linker. The prodrug is theoretically hydrolyzed in the body to afford the active drug by β-glucuronidase, an enzyme that is produced five times as much by cancer cells as by normal cells. This effectively creates a “magic-bullet” form of chemotherapy, known as Direct Enzyme Prodrug Therapy (DEPT).
ContributorsClark, Caroline Marie (Author) / Pettit, George Robert (Thesis director) / Melody, Noeleen (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2015-05
131931-Thumbnail Image.png
Description
Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%,

Small cell carcinoma of the ovary (SCCOHT) is a rare ovarian cancer affecting young women and characterized by mutation in SMARCA4 and silencing of SMARCA2, two tumor suppressors that function as ATPases in the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. SCCOHT patients face a 5-year survival rate of only 26%, but recently we have identified sensitivity of SCCOHT models to a natural product, triptolide. This study aims to ascertain the mechanism of action of triptolide. Previous SCCOHT epigenetic drug research has shown that some drugs reverse SMARCA2 epigenetic silencing to inhibit tumor growth, therefore it is hypothesized that triptolide acts the same and restores SWI/SNF function. Cells treated with triptolide have no change in SMARCA2 expression, suggesting that re-expression of epigenetically silenced tumor suppressor gene does not underlie its mechanism of action. Growth rates following triptolide treatment were observed in the presence and absence of SMARCA4, but no difference in sensitivity was observed. Thus, it is not likely that triptolide acts by restoring SWI/SNF. Others have observed that triptolide acts on xeroderma pigmentosa type B protein (XPB), a component of super-enhancers, which are DNA regions with high levels of transcription that regulate genes responsible for cell identity and oncogenes driving tumorigenesis. Both SCCOHT-1 and BIN67 cell lines treated with triptolide displayed lower expression of the super-enhancer associated MYC oncogene compared to untreated cells, supporting the theory that triptolide could be inhibiting super-enhancers regulating oncogenes.. A western blot confirmed reduced protein levels of RNA polymerase II and bromodomain 4 (BRD4), two essential components found at high levels at super-enhancers, in BIN67 cells treated with triptolide. ChIP-sequencing of Histone H3 Lysine-27 Acetylation (H3K27ac) marks in BIN67 and SCCOHT-1 cell lines identified super-enhancers in SCCOHT using tools CREAM and ROSE, which were mapped to neighboring genes associated genes and compared with the COSMIC database to identify oncogenes, of which the top 11 were examined by qRT-PCR to ascertain whether triptolide reduces their expression. It has been found that 6 out of 11 of the oncogenes examined (SALL4, MYC, SGK1, HIST1H3B, HMGA2, and CALR) decreased in expression when treated with triptolide. Thus, there is reason to believe that triptolide’s mechanism of action is via inhibition of super-enhancers that regulate oncogene expression.
ContributorsViloria, Nicolle Angela (Author) / Lake, Douglas (Thesis director) / Hendricks, William (Committee member) / Lang, Jessica (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133841-Thumbnail Image.png
Description
Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found to be highly expressed in neural tissue as well. The

Glioblastoma multiforme (GBM) is an aggressive malignant brain tumor with a median prognosis of 14 months. Human hairless protein (HR) is a 130 kDa nuclear transcription factor that plays a critical role in skin and hair function but was found to be highly expressed in neural tissue as well. The expression of HR in GBM tumor cells is significantly decreased compared to the normal brain tissue and low levels of HR expression is associated with shortened patient survival. We have recently reported that HR is a DNA binding phosphoprotein, which binds to p53 protein and p53 responsive element (p53RE) in vitro and in intact cells. We hypothesized that HR can regulate p53 downstream target genes, and consequently affects cellular function and activity. To test the hypothesis, we overexpressed HR in normal human embryonic kidney HEK293 and GBM U87MG cell lines and characterized these cells by analyzing p53 target gene expression, viability, cell-cycle arrest, and apoptosis. The results revealed that the overexpressed HR not only regulates p53-mediated target gene expression, but also significantly inhibit cell viability, induced early apoptosis, and G2/M cell cycle arrest in U87MG cells, compared to mock groups. Translating the knowledge gained from this research on the connections between HR and GBM could aid in identifying novel therapies to circumvent GBM progression or improve clinical outcome.
ContributorsBrook, Lemlem Addis (Author) / Blattman, Joseph (Thesis director) / Hsieh, Jui-Cheng (Committee member) / Goldstein, Elliott (Committee member) / Harrington Bioengineering Program (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134305-Thumbnail Image.png
Description
Since Metastatic Osteosarcoma is unresponsive to most of the current standards of care currently available, and yields a survival rate of 20%, it is pertinent that novel approaches to treating it be undertaken in scientific research. Past studies in our lab have used a The Immune Blockade Therapy, utilizing α-CTLA-4

Since Metastatic Osteosarcoma is unresponsive to most of the current standards of care currently available, and yields a survival rate of 20%, it is pertinent that novel approaches to treating it be undertaken in scientific research. Past studies in our lab have used a The Immune Blockade Therapy, utilizing α-CTLA-4 and α-PD-L1 to treat mice with metastatic osteosarcoma; this resulted in 60% of mice achieving disease-free survival and protective immunity against metastatic osteosarcoma. 12 We originally wanted to see if the survival rate could be boosted by pairing the immune blockade therapy with another current, standard of care, radiation. We had found that there were certain, key features to experimental design that had to be maintained and explored further in order to raise survival rates, ultimately with the goal of reestablishing the 60% survival rate seen in mice treated with the immune blockade therapy. Our results show that mice with mature immune systems, which develop by 6-8 weeks, should be used in experiments testing an immune blockade, or other forms of immunotherapy, as they are capable of properly responding to treatment. Treatment as early as one day after should be maintained in future experiments looking at the immune blockade therapy for the treatment of metastatic osteosarcoma in mice. The immune blockade therapy, using α-PD-L1 and α-CTLA-4, seems to work synergistically with radiation, a current standard of care. The combination of these therapies could potentially boost the 60% survival rate, as previously seen in mice treated with α-PD-L1 and α-CTLA-4, to a higher percent by means of reducing tumor burden and prolonging length of life in metastatic osteosarcoma.
ContributorsLabban, Nicole (Author) / Blattman, Joseph (Thesis director) / Appel, Nicole (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05
134876-Thumbnail Image.png
Description
PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place

PD-L1 blockade has shown recent success in cancer therapy and cancer vaccine regimens. One approach for anti-PD-L1 antibodies has been their application as adjuvants for cancer vaccines. Given the disadvantages of such antibodies, including long half-life and adverse events related to their use, a novel strategy using synbodies in place of antibodies can be tested. Synbodies offer a variety of advantages, including shorter half-life, smaller size, and cheaper cost. Peptides that could bind PD-L1 were identified via peptide arrays and used to construct synbodies. These synbodies were tested with inhibition ELISA assays, SPR, and pull down assays. Additional flow cytometry analysis was done to determine the binding specificity of the synbodies to PD-L1 and the ability of those synbodies to inhibit the PD-L1/PD-1 interaction. Although analysis of permeabilized cells expressing PD-L1 indicated that the synbodies could successfully bind PD-L1, those results were not replicated in non-permeabilized cells. Further assays suggested that the binding of the synbodies was non-specific. Other tests were done to see if the synbodies could inhibit the PD-1/PD-L1 interaction. This assay did not yield any conclusive results and further experimentation is needed to determine the efficacy of the synbodies in inhibiting this interaction.
ContributorsMujahed, Tala (Author) / Johnston, Stephen (Thesis director) / Blattman, Joseph (Committee member) / Diehnelt, Chris (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134792-Thumbnail Image.png
Description
While specific resistance mechanisms to targeted inhibitors in BRAF-mutant cutaneous melanoma have been identified, surprisingly little is known about the rate at which resistance develops under different treatment options. There is increasing evidence that resistance arises from pre-existing clones rather than from de novo mutations, but there remains the need

While specific resistance mechanisms to targeted inhibitors in BRAF-mutant cutaneous melanoma have been identified, surprisingly little is known about the rate at which resistance develops under different treatment options. There is increasing evidence that resistance arises from pre-existing clones rather than from de novo mutations, but there remains the need for a better understanding of how different drugs affect the fitness of clones within a tumor population and promote or delay the emergence of resistance. To this end, we have developed an assay that defines the in vitro rate of adaptation by analyzing the progressive change in sensitivity of a melanoma cell line to different treatments. We performed a proof-of-theory experiment based on the hypothesis that drugs that cause cell death (cytotoxic) impose a higher selection pressure for drug-resistant clones than drugs that cause cell-cycle arrest (cytostatic drugs), thereby resulting in a faster rate of adaptation. We tested this hypothesis by continuously treating the BRAFV600E melanoma cell line A375 with the cytotoxic MEK inhibitor E6201 and the cytostatic MEK inhibitor trametinib, both of which are known to be effective in the setting of constitutive oncogenic signaling driven by the BRAF mutation. While the identification of confounding factors prevented the direct comparison between E6201-treated and trametinib-treated cells, we observed that E6201-treated cells demonstrate decreased drug sensitivity compared to vehicle-treated cells as early as 18 days after treatment begins. We were able to quantify this rate of divergence at 2.6% per passage by measuring the increase over time in average viability difference between drug-treated and vehicle-treated cells within a DDR analysis. We argue that this value correlates to the rate of adaptation. Furthermore, this study includes efforts to establish a barcoded cell line to allow for individual clonal tracking and efforts to identify synergistic and antagonist drug combinations for use in future experiments. Ultimately, we describe here a novel system capable of quantifying adaptation rate in cancer cells undergoing treatment, and we anticipate that this assay will prove helpful in identifying treatment options that circumvent or delay resistance through future hypothesis-driven experiments.
ContributorsDe Luca, Valerie Jean (Author) / Wilson Sayres, Melissa (Thesis director) / Trent, Jeff (Committee member) / Hendricks, William (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135062-Thumbnail Image.png
Description
The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of

The p53 gene functions as a tumor suppressor that inhibits proliferation, regulates apoptosis, DNA repair, and normal cell cycle arrest. Mutation of the p53 gene is linked to be prevalent in 50% of all human cancers. In this paper, we are exploring triple negative breast cancer and the effects of simvastatin on tumor growth and survival. Simvastatin is a drug that is primarily used to treat high cholesterol and heart disease. Simvastatin is unique because it is able to inhibit protein prenylation through regulation of the mevalonate pathway. This makes it a potential targeted drug for therapy against p53 mutant cancer. The mechanism behind this is hypothesized to be correlated to aberrant activation of the Ras pathway. The Ras subfamily functions to transcriptionally regulate cell growth and survival, and will therefore allow for a tumor to thrive if the pathway is continually and abnormally activated. The Ras protein has to be prenylated in order for activation of this pathway to occur, making statin drug treatment a viable option as a cancer treatment. This is because it acts as a regulator of the mevalonate pathway which is upstream of protein prenylation. It is thus vital to understand these pathways at both the gene and protein level in different p53 mutants to further understand if simvastatin is indeed a drug with anti-cancer properties and can be used to target cancers with p53 mutation. The goal of this project is to study the biochemistry behind the mutation of p53's sensitivity to statin. With this information we can create a possible signature for those who could benefit from Simvastatin drug treatment as a possible targeted treatment for p53 mutant cancers.
ContributorsGrewal, Harneet (Co-author) / Loo, Yi Jia Valerie (Co-author) / Anderson, Karen (Thesis director) / Blattman, Joseph (Committee member) / Ferdosi, Shayesteh (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
171749-Thumbnail Image.png
Description
Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant

Adaptive therapy utilizes competitive interactions between resistant and sensitive cells by keeping some sensitive cells to control tumor burden with the aim of increasing overall survival and time to progression. The use of adaptive therapy to treat breast cancer, ovarian cancer, and pancreatic cancer in preclinical models has shown significant results in controlling tumor growth. The adaptive therapy model comes from the integrated pest management agricultural strategy, predator prey model, and the unique intra- and inter-tumor heterogeneity of tumors. The purpose of this thesis is to analyze and compare gemcitabine dose response on hormone refractory breast cancer cells retrieved from mice using an adaptive therapy strategy with standard therapy treatment. In this study, we compared intermittent (drug holiday) adaptive therapy with maximum tolerated dose therapy. The MCF7 resistant cell lines to both fulvestrant and palbociclib were injected into the mammary fat pads of 8 weeks old NOD/SCID gamma (NSG) mice which were then treated with gemcitabine. Tumor burden graphs were made to track tumor growth/decline during different treatments while Drug Dose Response (DDR) curves were made to test the sensitivity of the cell lines to the drug gemcitabine. The tumor burden graphs showed success in controlling the tumor burden with intermittent treatment. The DDR curves showed a positive result in using the adaptive therapy treatment method to treat mice with gemcitabine. Due to some fluctuating DDR results, the sensitivity of the cell lines to gemcitabine needs to be further studied by repeating the DDR experiment on the other mice cell lines for stronger results.
ContributorsConti, Aviona Christina (Author) / Maley, Carlo (Thesis advisor) / Blattman, Joseph (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2022