Matching Items (8)
Filtering by

Clear all filters

136771-Thumbnail Image.png
DescriptionMy main goal for my thesis is in conjunction with the research I started in the summer of 2010 regarding the creation of a TBI continuous-time sensor. Such goals include: characterizing the proteins in sensing targets while immobilized, while free in solution, and while in free solution in the blood.
ContributorsHaselwood, Brittney (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Cook, Curtiss (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2011-12
136869-Thumbnail Image.png
Description
The use of saliva sampling as a noninvasive way for drug analysis as well as the monitoring systems within the body has become increasingly important in recent research. Because of the growing interest in saliva, this project proposes a way to analyze sodium ion concentration in a saliva solution based

The use of saliva sampling as a noninvasive way for drug analysis as well as the monitoring systems within the body has become increasingly important in recent research. Because of the growing interest in saliva, this project proposes a way to analyze sodium ion concentration in a saliva solution based on its fluorescence level when in the presence of a sodium indicator dye and recorded with a smartphone camera. The dyed sample was placed in a specially designed housing to exclude all ambient light from the images. A source light of known wavelength was used to excite the fluorescent dye and the smartphone camera images recorded the emission light wavelengths. After analysis of the images using ImageJ, it was possible to create a model to determine the level of fluorescence based on sodium ion concentration. The smartphone camera image model was compared to readings from a standard fluorescence plate recorder to test the accuracy of the model. The study found that the model was accurate within 5 % as compared to the fluorescence plate recorder. Based on the results, it was concluded that the method and resulting model proposed in this study is a valid was to analyze saliva or other solutions for their sodium ion concentration via images recorded by a smartphone camera.
ContributorsSmith, Catherine Julia (Author) / Antonio, Garcia (Thesis director) / Caplan, Michael (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134788-Thumbnail Image.png
Description
Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with

Concussions and traumatic brain injuries are mechanical events which can derive from no specific activity or event. However, these injuries occur often during athletic and sporting events but many athletes experiencing these symptoms go undiagnosed and continue playing without proper medical attention. The current gold standard for diagnosing athletes with concussions is to have medical professionals on the sidelines of events to perform qualitative standardized assessments which may not be performed frequently enough and are not specialized for each athlete. The purpose of this report is to discuss a study sanctioned by Arizona State University's Project HoneyBee and additional affiliations to validate a third-party mouth guard device product to recognize and detect force impacts blown to an athlete's head during athletic activity. Current technology in health monitoring medical devices can allow users to apply this device as an additional safety mechanism for early concussion awareness and diagnosis. This report includes the materials and methods used for experimentation, the discussion of its results, and the complications which occurred and areas for improvement during the preliminary efforts of this project. Participants in the study were five non-varsity ASU Wrestling athletes who volunteered to wear a third-party mouth guard device during sparring contact at practice. Following a needed calibration period for the devices, results were recorded both through visual observation and with the mouth guard devices using an accelerometer and gyroscope. This study provided a sound understanding for the operation and functionality of the mouth guard devices. The mouth guard devices have the capability to provide fundamental avenues of research for future investigations.
ContributorsTielke, Austin Wyatt (Author) / Ross, Heather (Thesis director) / LaBelle, Jeffrey (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135300-Thumbnail Image.png
Description
According to a survey conducted by the National Endowment for the Arts, 32% of adults in the United States participated in social dancing in 2012, more than any other form of art-making and art-sharing. Partnership dance styles including Ballroom, Latin, and Swing are the most commonly practiced forms of social

According to a survey conducted by the National Endowment for the Arts, 32% of adults in the United States participated in social dancing in 2012, more than any other form of art-making and art-sharing. Partnership dance styles including Ballroom, Latin, and Swing are the most commonly practiced forms of social dancing. T.V. shows like "Dancing with the Stars" and "So You Think You Can Dance" have piqued the interest of local high schools in partnership dance. Arizona State University's (ASU) School of Film, Dance and Theatre (SoFDT) is uniquely positioned to leverage the large partnership dance program and the vibrant Phoenix Metro partnership dance community to address this interest. The School of Film Dance and Theatre should implement a course teaching partnership dance in local high schools. The class will be modeled after existing student teaching programs with changes made to reflect the requirements of teaching partnership dance. Specifically, ASU students will spend one day a week teaching a partnership module in a local high school and one day a week developing pedagogical skills in a lecture and discussion group format. High school students will learn the basic steps of 3 dances and perform a partnership dance showcase. ASU students will get hands-on experience teaching as part of a team in high school settings. This program fulfils ASU and SoFDT goals by making dance accessible to new audiences and engaging students in the local community. This proposed program benefits current undergraduate students by developing a functional understanding of teaching partnership dance in a group setting. Beyond ASU, it stands to give high school students a chance to learn a cost-prohibitive art and teach them a lifelong skill.
ContributorsLangenbach, William Paul (Author) / Caves, Larry (Thesis director) / Jackson, Naomi (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
164830-Thumbnail Image.png
Description

Traumatic brain injury (TBI) is defined as an injury to the head that disrupts normal brain function. TBI has been described as a disease process that can lead to an increased risk for developing chronic neurodegenerative diseases, like frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A pathological hallmark

Traumatic brain injury (TBI) is defined as an injury to the head that disrupts normal brain function. TBI has been described as a disease process that can lead to an increased risk for developing chronic neurodegenerative diseases, like frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). A pathological hallmark of FTLD and a hallmark of ALS is the nuclear mislocalization of TAR DNA Binding Protein 43 (TDP-43). This project aims to explore neurodegenerative effects of TBI on cortical lesion area using immunohistochemical markers of TDP-43 proteinopathies. We analyzed the total percent of NEUN positive cells displaying TDP-43 nuclear mislocalization. We found that the percent of NEUN positive cells displaying TDP-43 nuclear mislocalization was significantly higher in cortical tissue following TBI when compared to the age-matched control brains. The cortical lesion area was analyzed for each injured brain sample, with respect to days post-injury (DPI), and it was found that there were no statistically significant differences between cortical lesion areas across time points. The percent of NEUN positive cells displaying TDP-43 nuclear mislocalization was analyzed for each cortical tissue sample, with respect to cortical lesion area, and it was found that there were no statistically significant differences between the percent of NEUN positive cells displaying TDP-43 nuclear mislocalization, with respect to cortical lesion area. In conclusion, we found no correlation between the percent of cortical NEUN positive cells displaying TDP-43 nuclear mislocalization with respect to the size of the cortical lesion area.

ContributorsWong, Jennifer (Author) / Stabenfeldt, Sarah (Thesis director) / Bjorklund, Reed (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05
163463-Thumbnail Image.png
Description

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases such as Alzheimer’s Disease (AD). One such molecular signaling pathway that may link TBI to AD is necroptosis. Necroptosis is an atypical mode of cell death compared with traditional apoptosis, both of which have been demonstrated to be present post-TBI [4-6]. Necroptosis is initiated by tissue necrosis factor (TNF) signaling through the RIPK1/RIPK3/MLKL pathway, leading to cell failure and subsequent death. Prior studies in rodent TBI models report necroptotic activity acutely after injury, within 48 hours. Here, the study objective was to recapitulate prior data and characterize MLKL and RIPK1 cortical expression post-TBI with our lab’s controlled cortical impact mouse model. Using standard immunohistochemistry approaches, it was determined that the tissue sections acquired by prior lab members were of poor quality to conduct robust MLKL and RIPK1 immunostaining assessment. Therefore, the thesis focused on presenting the staining method completed. The discussion also expanded on expected results from these studies regarding the spatial distribution necroptotic signaling in this TBI model.

ContributorsHuber, Kristin (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
Description
Traumatic brain injury (TBI) poses a significant global health concern with substantial health and economic consequences. Patients often face significant consequences after injury, notably persistent cognitive changes and an increased risk of developing neurodegenerative disease later in life. Apart from the immediate insult, the resulting inflammatory response can lead to

Traumatic brain injury (TBI) poses a significant global health concern with substantial health and economic consequences. Patients often face significant consequences after injury, notably persistent cognitive changes and an increased risk of developing neurodegenerative disease later in life. Apart from the immediate insult, the resulting inflammatory response can lead to neuroinflammation, oxidative stress, tissue death, and long-term neurodegeneration. Microglia and astrocytes play critical roles in these inflammatory processes, emphasizing the unmet need for targeted therapies. Vaccine formulations consisting of poly (a-ketoglutarate) (paKG) microparticles (MPs) encapsulating PFK15 (1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one) and myelin proteolipid protein (PLP) were developed for prior studies and have demonstrated the production of antigen-specific adaptive T-cell responses in the brain, spleen, and lymph nodes of mice, suggesting that these formulations may be able to prevent neuronal inflammation in mice after TBI. The vaccine efficacy was further evaluated through the image analysis of immunohistochemically stained brain tissue sections from naive, saline, and paKG(PFK15+PLP) MPs or paKG(PFK15) MPs treated mice. Though microglia (Iba1), astrocytes (GFAP) and CD86 were visualized in this method, only Iba1 was found to be significantly reduced in the contralateral hemisphere for paKG(PFK15+PLP) MPs and paKG(PFK15) MPs groups when compared to naive (p=0.0373 and p=0.0186, respectively). However, the naive group also showed an unexpectedly high level of CD86 after thresholding (compared to the TBI groups), indicating flaws were present in the analysis pipeline. Challenges of the image analysis process included thresholding setting optimization, folded tissues, bubbles, and saturated punctate signal. These issues may have impacted data accuracy, underscoring the need for rigorous optimization of experimental techniques and imaging methodologies when evaluating the therapeutic potential of the vaccines in mitigating TBI-induced neuroinflammation. Thus, future analyses should consider microglial morphology and employ more accurate thresholding in FIJI/ImageJ to better measure cellular activation and the overall positive signal.
ContributorsSundem, Andrea (Author) / Stabenfeldt, Sarah (Thesis director) / Willingham, Crystal (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05