Matching Items (53)
Filtering by

Clear all filters

149928-Thumbnail Image.png
Description
The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards

The technology expansion seen in the last decade for genomics research has permitted the generation of large-scale data sources pertaining to molecular biological assays, genomics, proteomics, transcriptomics and other modern omics catalogs. New methods to analyze, integrate and visualize these data types are essential to unveil relevant disease mechanisms. Towards these objectives, this research focuses on data integration within two scenarios: (1) transcriptomic, proteomic and functional information and (2) real-time sensor-based measurements motivated by single-cell technology. To assess relationships between protein abundance, transcriptomic and functional data, a nonlinear model was explored at static and temporal levels. The successful integration of these heterogeneous data sources through the stochastic gradient boosted tree approach and its improved predictability are some highlights of this work. Through the development of an innovative validation subroutine based on a permutation approach and the use of external information (i.e., operons), lack of a priori knowledge for undetected proteins was overcome. The integrative methodologies allowed for the identification of undetected proteins for Desulfovibrio vulgaris and Shewanella oneidensis for further biological exploration in laboratories towards finding functional relationships. In an effort to better understand diseases such as cancer at different developmental stages, the Microscale Life Science Center headquartered at the Arizona State University is pursuing single-cell studies by developing novel technologies. This research arranged and applied a statistical framework that tackled the following challenges: random noise, heterogeneous dynamic systems with multiple states, and understanding cell behavior within and across different Barrett's esophageal epithelial cell lines using oxygen consumption curves. These curves were characterized with good empirical fit using nonlinear models with simple structures which allowed extraction of a large number of features. Application of a supervised classification model to these features and the integration of experimental factors allowed for identification of subtle patterns among different cell types visualized through multidimensional scaling. Motivated by the challenges of analyzing real-time measurements, we further explored a unique two-dimensional representation of multiple time series using a wavelet approach which showcased promising results towards less complex approximations. Also, the benefits of external information were explored to improve the image representation.
ContributorsTorres Garcia, Wandaliz (Author) / Meldrum, Deirdre R. (Thesis advisor) / Runger, George C. (Thesis advisor) / Gel, Esma S. (Committee member) / Li, Jing (Committee member) / Zhang, Weiwen (Committee member) / Arizona State University (Publisher)
Created2011
149723-Thumbnail Image.png
Description
This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree models. Associative classifiers can achieve

This dissertation transforms a set of system complexity reduction problems to feature selection problems. Three systems are considered: classification based on association rules, network structure learning, and time series classification. Furthermore, two variable importance measures are proposed to reduce the feature selection bias in tree models. Associative classifiers can achieve high accuracy, but the combination of many rules is difficult to interpret. Rule condition subset selection (RCSS) methods for associative classification are considered. RCSS aims to prune the rule conditions into a subset via feature selection. The subset then can be summarized into rule-based classifiers. Experiments show that classifiers after RCSS can substantially improve the classification interpretability without loss of accuracy. An ensemble feature selection method is proposed to learn Markov blankets for either discrete or continuous networks (without linear, Gaussian assumptions). The method is compared to a Bayesian local structure learning algorithm and to alternative feature selection methods in the causal structure learning problem. Feature selection is also used to enhance the interpretability of time series classification. Existing time series classification algorithms (such as nearest-neighbor with dynamic time warping measures) are accurate but difficult to interpret. This research leverages the time-ordering of the data to extract features, and generates an effective and efficient classifier referred to as a time series forest (TSF). The computational complexity of TSF is only linear in the length of time series, and interpretable features can be extracted. These features can be further reduced, and summarized for even better interpretability. Lastly, two variable importance measures are proposed to reduce the feature selection bias in tree-based ensemble models. It is well known that bias can occur when predictor attributes have different numbers of values. Two methods are proposed to solve the bias problem. One uses an out-of-bag sampling method called OOBForest, and the other, based on the new concept of a partial permutation test, is called a pForest. Experimental results show the existing methods are not always reliable for multi-valued predictors, while the proposed methods have advantages.
ContributorsDeng, Houtao (Author) / Runger, George C. (Thesis advisor) / Lohr, Sharon L (Committee member) / Pan, Rong (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2011
150172-Thumbnail Image.png
Description
This thesis develops a low-investment marketing strategy that allows low-to-mid level farmers extend their commercialization reach by strategically sending containers of fresh produce items to secondary markets that present temporary arbitrage opportunities. The methodology aims at identifying time windows of opportunity in which the price differential between two markets create

This thesis develops a low-investment marketing strategy that allows low-to-mid level farmers extend their commercialization reach by strategically sending containers of fresh produce items to secondary markets that present temporary arbitrage opportunities. The methodology aims at identifying time windows of opportunity in which the price differential between two markets create an arbitrage opportunity for a transaction; a transaction involves buying a fresh produce item at a base market, and then shipping and selling it at secondary market price. A decision-making tool is developed that gauges the individual arbitrage opportunities and determines the specific price differential (or threshold level) that is most beneficial to the farmer under particular market conditions. For this purpose, two approaches are developed; a pragmatic approach that uses historic price information of the products in order to find the optimal price differential that maximizes earnings, and a theoretical one, which optimizes an expected profit model of the shipments to identify this optimal threshold. This thesis also develops risk management strategies that further reduce profit variability during a particular two-market transaction. In this case, financial engineering concepts are used to determine a shipment configuration strategy that minimizes the overall variability of the profits. For this, a Markowitz model is developed to determine the weight assignation of each component for a particular shipment. Based on the results of the analysis, it is deemed possible to formulate a shipment policy that not only increases the farmer's commercialization reach, but also produces profitable operations. In general, the observed rates of return under a pragmatic and theoretical approach hovered between 0.072 and 0.616 within important two-market structures. Secondly, it is demonstrated that the level of return and risk can be manipulated by varying the strictness of the shipping policy to meet the overall objectives of the decision-maker. Finally, it was found that one can minimize the risk of a particular two-market transaction by strategically grouping the product shipments.
ContributorsFlores, Hector M (Author) / Villalobos, Rene (Thesis advisor) / Runger, George C. (Committee member) / Maltz, Arnold (Committee member) / Arizona State University (Publisher)
Created2011
152223-Thumbnail Image.png
Description
Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has

Nowadays product reliability becomes the top concern of the manufacturers and customers always prefer the products with good performances under long period. In order to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because most of the products can last years even decades. Much research has been done in the ALT area and optimal design for ALT is a major topic. This dissertation consists of three main studies. First, a methodology of finding optimal design for ALT with right censoring and interval censoring have been developed and it employs the proportional hazard (PH) model and generalized linear model (GLM) to simplify the computational process. A sensitivity study is also given to show the effects brought by parameters to the designs. Second, an extended version of I-optimal design for ALT is discussed and then a dual-objective design criterion is defined and showed with several examples. Also in order to evaluate different candidate designs, several graphical tools are developed. Finally, when there are more than one models available, different model checking designs are discussed.
ContributorsYang, Tao (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Borror, Connie (Committee member) / Rigdon, Steve (Committee member) / Arizona State University (Publisher)
Created2013
151329-Thumbnail Image.png
Description
During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental work. These experiments often referred to as screening experiments help reduce the large number of factors to a smaller set.

During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental work. These experiments often referred to as screening experiments help reduce the large number of factors to a smaller set. The 16 run regular fractional factorial designs for six, seven and eight factors are in common usage. These designs allow clear estimation of all main effects when the three-factor and higher order interactions are negligible, but all two-factor interactions are aliased with each other making estimation of these effects problematic without additional runs. Alternatively, certain nonregular designs called no-confounding (NC) designs by Jones and Montgomery (Jones & Montgomery, Alternatives to resolution IV screening designs in 16 runs, 2010) partially confound the main effects with the two-factor interactions but do not completely confound any two-factor interactions with each other. The NC designs are useful for independently estimating main effects and two-factor interactions without additional runs. While several methods have been suggested for the analysis of data from nonregular designs, stepwise regression is familiar to practitioners, available in commercial software, and is widely used in practice. Given that an NC design has been run, the performance of stepwise regression for model selection is unknown. In this dissertation I present a comprehensive simulation study evaluating stepwise regression for analyzing both regular fractional factorial and NC designs. Next, the projection properties of the six, seven and eight factor NC designs are studied. Studying the projection properties of these designs allows the development of analysis methods to analyze these designs. Lastly the designs and projection properties of 9 to 14 factor NC designs onto three and four factors are presented. Certain recommendations are made on analysis methods for these designs as well.
ContributorsShinde, Shilpa (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Committee member) / Fowler, John (Committee member) / Jones, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151341-Thumbnail Image.png
Description
With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors that provide real time information of the traffic in the city, a change in these trajectories with time can reveal that the road network has changed. To detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood estimates under assumed changes and used to detect changes in trajectory data with time. Data from vehicles are used to test the method for change detection. Secondly, sequential pattern mining is used to develop a model to detect changes in frequent patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns still frequent in the new data? If they are frequent, has the time interval distribution in the pattern changed? Two different approaches are considered for change detection, frequency-based approach and distribution-based approach. The methods are illustrated with vehicle trajectory data. Finally, a model is developed for clustering and outlier detection in semantic trajectories. A challenge with clustering semantic trajectories is that both numeric and categorical attributes are present. Another problem to be addressed while clustering is that trajectories can be of different lengths and also have missing values. A tree-based ensemble is used to address these problems. The approach is extended to outlier detection in semantic trajectories.
ContributorsKondaveeti, Anirudh (Author) / Runger, George C. (Thesis advisor) / Mirchandani, Pitu (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2012
152015-Thumbnail Image.png
Description
This dissertation explores different methodologies for combining two popular design paradigms in the field of computer experiments. Space-filling designs are commonly used in order to ensure that there is good coverage of the design space, but they may not result in good properties when it comes to model fitting. Optimal

This dissertation explores different methodologies for combining two popular design paradigms in the field of computer experiments. Space-filling designs are commonly used in order to ensure that there is good coverage of the design space, but they may not result in good properties when it comes to model fitting. Optimal designs traditionally perform very well in terms of model fitting, particularly when a polynomial is intended, but can result in problematic replication in the case of insignificant factors. By bringing these two design types together, positive properties of each can be retained while mitigating potential weaknesses. Hybrid space-filling designs, generated as Latin hypercubes augmented with I-optimal points, are compared to designs of each contributing component. A second design type called a bridge design is also evaluated, which further integrates the disparate design types. Bridge designs are the result of a Latin hypercube undergoing coordinate exchange to reach constrained D-optimality, ensuring that there is zero replication of factors in any one-dimensional projection. Lastly, bridge designs were augmented with I-optimal points with two goals in mind. Augmentation with candidate points generated assuming the same underlying analysis model serves to reduce the prediction variance without greatly compromising the space-filling property of the design, while augmentation with candidate points generated assuming a different underlying analysis model can greatly reduce the impact of model misspecification during the design phase. Each of these composite designs are compared to pure space-filling and optimal designs. They typically out-perform pure space-filling designs in terms of prediction variance and alphabetic efficiency, while maintaining comparability with pure optimal designs at small sample size. This justifies them as excellent candidates for initial experimentation.
ContributorsKennedy, Kathryn (Author) / Montgomery, Douglas C. (Thesis advisor) / Johnson, Rachel T. (Thesis advisor) / Fowler, John W (Committee member) / Borror, Connie M. (Committee member) / Arizona State University (Publisher)
Created2013
152087-Thumbnail Image.png
Description
Nonregular screening designs can be an economical alternative to traditional resolution IV 2^(k-p) fractional factorials. Recently 16-run nonregular designs, referred to as no-confounding designs, were introduced in the literature. These designs have the property that no pair of main effect (ME) and two-factor interaction (2FI) estimates are completely confounded. In

Nonregular screening designs can be an economical alternative to traditional resolution IV 2^(k-p) fractional factorials. Recently 16-run nonregular designs, referred to as no-confounding designs, were introduced in the literature. These designs have the property that no pair of main effect (ME) and two-factor interaction (2FI) estimates are completely confounded. In this dissertation, orthogonal arrays were evaluated with many popular design-ranking criteria in order to identify optimal 20-run and 24-run no-confounding designs. Monte Carlo simulation was used to empirically assess the model fitting effectiveness of the recommended no-confounding designs. The results of the simulation demonstrated that these new designs, particularly the 24-run designs, are successful at detecting active effects over 95% of the time given sufficient model effect sparsity. The final chapter presents a screening design selection methodology, based on decision trees, to aid in the selection of a screening design from a list of published options. The methodology determines which of a candidate set of screening designs has the lowest expected experimental cost.
ContributorsStone, Brian (Author) / Montgomery, Douglas C. (Thesis advisor) / Silvestrini, Rachel T. (Committee member) / Fowler, John W (Committee member) / Borror, Connie M. (Committee member) / Arizona State University (Publisher)
Created2013
152382-Thumbnail Image.png
Description
A P-value based method is proposed for statistical monitoring of various types of profiles in phase II. The performance of the proposed method is evaluated by the average run length criterion under various shifts in the intercept, slope and error standard deviation of the model. In our proposed approach, P-values

A P-value based method is proposed for statistical monitoring of various types of profiles in phase II. The performance of the proposed method is evaluated by the average run length criterion under various shifts in the intercept, slope and error standard deviation of the model. In our proposed approach, P-values are computed at each level within a sample. If at least one of the P-values is less than a pre-specified significance level, the chart signals out-of-control. The primary advantage of our approach is that only one control chart is required to monitor several parameters simultaneously: the intercept, slope(s), and the error standard deviation. A comprehensive comparison of the proposed method and the existing KMW-Shewhart method for monitoring linear profiles is conducted. In addition, the effect that the number of observations within a sample has on the performance of the proposed method is investigated. The proposed method was also compared to the T^2 method discussed in Kang and Albin (2000) for multivariate, polynomial, and nonlinear profiles. A simulation study shows that overall the proposed P-value method performs satisfactorily for different profile types.
ContributorsAdibi, Azadeh (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie (Thesis advisor) / Li, Jing (Committee member) / Zhang, Muhong (Committee member) / Arizona State University (Publisher)
Created2013
152398-Thumbnail Image.png
Description
Identifying important variation patterns is a key step to identifying root causes of process variability. This gives rise to a number of challenges. First, the variation patterns might be non-linear in the measured variables, while the existing research literature has focused on linear relationships. Second, it is important to remove

Identifying important variation patterns is a key step to identifying root causes of process variability. This gives rise to a number of challenges. First, the variation patterns might be non-linear in the measured variables, while the existing research literature has focused on linear relationships. Second, it is important to remove noise from the dataset in order to visualize the true nature of the underlying patterns. Third, in addition to visualizing the pattern (preimage), it is also essential to understand the relevant features that define the process variation pattern. This dissertation considers these variation challenges. A base kernel principal component analysis (KPCA) algorithm transforms the measurements to a high-dimensional feature space where non-linear patterns in the original measurement can be handled through linear methods. However, the principal component subspace in feature space might not be well estimated (especially from noisy training data). An ensemble procedure is constructed where the final preimage is estimated as the average from bagged samples drawn from the original dataset to attenuate noise in kernel subspace estimation. This improves the robustness of any base KPCA algorithm. In a second method, successive iterations of denoising a convex combination of the training data and the corresponding denoised preimage are used to produce a more accurate estimate of the actual denoised preimage for noisy training data. The number of primary eigenvectors chosen in each iteration is also decreased at a constant rate. An efficient stopping rule criterion is used to reduce the number of iterations. A feature selection procedure for KPCA is constructed to find the set of relevant features from noisy training data. Data points are projected onto sparse random vectors. Pairs of such projections are then matched, and the differences in variation patterns within pairs are used to identify the relevant features. This approach provides robustness to irrelevant features by calculating the final variation pattern from an ensemble of feature subsets. Experiments are conducted using several simulated as well as real-life data sets. The proposed methods show significant improvement over the competitive methods.
ContributorsSahu, Anshuman (Author) / Runger, George C. (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2013