Matching Items (3)
Filtering by

Clear all filters

153845-Thumbnail Image.png
Description
Hospital Emergency Departments (EDs) are frequently crowded. The Center for

Medicare and Medicaid Services (CMS) collects performance measurements from EDs

such as that of the door to clinician time. The door to clinician time is the time at which a

patient is first seen by a clinician. Current methods for

Hospital Emergency Departments (EDs) are frequently crowded. The Center for

Medicare and Medicaid Services (CMS) collects performance measurements from EDs

such as that of the door to clinician time. The door to clinician time is the time at which a

patient is first seen by a clinician. Current methods for documenting the door to clinician

time are in written form and may contain inaccuracies. The goal of this thesis is to

provide a method for automatic and accurate retrieval and documentation of the door to

clinician time. To automatically collect door to clinician times, single board computers

were installed in patient rooms that logged the time whenever they saw a specific

Bluetooth emission from a device that the clinician carried. The Bluetooth signal is used

to calculate the distance of the clinician from the single board computer. The logged time

and distance calculation is then sent to the server where it is determined if the clinician

was in the room seeing the patient at the time logged. The times automatically collected

were compared with the handwritten times recorded by clinicians and have shown that

they are justifiably accurate to the minute.
ContributorsFrisby, Joshua (Author) / Nelson, Brian C (Thesis advisor) / Patel, Vimla L. (Thesis advisor) / Smith, Vernon (Committee member) / Kaufman, David R. (Committee member) / Arizona State University (Publisher)
Created2015
155653-Thumbnail Image.png
Description
Clinicians confront formidable challenges with information management and coordination activities. When not properly integrated into clinical workflow, technologies can further burden clinicians’ cognitive resources, which is associated with medical errors and risks to patient safety. An understanding of workflow is necessary to redesign information technologies (IT) that better support clinical

Clinicians confront formidable challenges with information management and coordination activities. When not properly integrated into clinical workflow, technologies can further burden clinicians’ cognitive resources, which is associated with medical errors and risks to patient safety. An understanding of workflow is necessary to redesign information technologies (IT) that better support clinical processes. This is particularly important in surgical care, which is among the most clinical and resource intensive settings in healthcare, and is associated with a high rate of adverse events. There are a growing number of tools to study workflow; however, few produce the kinds of in-depth analyses needed to understand health IT-mediated workflow. The goals of this research are to: (1) investigate and model workflow and communication processes across technologies and care team members in post-operative hospital care; (2) introduce a mixed-method framework, and (3) demonstrate the framework by examining two health IT-mediated tasks. This research draws on distributed cognition and cognitive engineering theories to develop a micro-analytic strategy in which workflow is broken down into constituent people, artifacts, information, and the interactions between them. It models the interactions that enable information flow across people and artifacts, and identifies dependencies between them. This research found that clinicians manage information in particular ways to facilitate planned and emergent decision-making and coordination processes. Barriers to information flow include frequent information transfers, clinical reasoning absent in documents, conflicting and redundant data across documents and applications, and that clinicians are burdened as information managers. This research also shows there is enormous variation in how clinicians interact with electronic health records (EHRs) to complete routine tasks. Variation is best evidenced by patterns that occur for only one patient case and patterns that contain repeated events. Variation is associated with the users’ experience (EHR and clinical), patient case complexity, and a lack of cognitive support provided by the system to help the user find and synthesize information. The methodology is used to assess how health IT can be improved to better support clinicians’ information management and coordination processes (e.g., context-sensitive design), and to inform how resources can best be allocated for clinician observation and training.
ContributorsFurniss, Stephanie Kohli (Author) / Kaufman, David R. (Thesis advisor) / Grando, M. Adela (Committee member) / Johnson, William G. (Committee member) / Arizona State University (Publisher)
Created2017
137718-Thumbnail Image.png
Description
This thesis concerns the adoption of health information technology in the medical sector, specifically electronic health records (EHRs). EHRs have been seen as a great benefit to the healthcare system and will improve the quality of patient care. The federal government, has seen the benefit EHRs can offer, has been

This thesis concerns the adoption of health information technology in the medical sector, specifically electronic health records (EHRs). EHRs have been seen as a great benefit to the healthcare system and will improve the quality of patient care. The federal government, has seen the benefit EHRs can offer, has been advocating the use and adoption of EHR for nearly a decade now. They have created policies that guide medical providers on how to implement EHRs. However, this thesis concerns the attitudes medical providers in Phoenix have towards government implementation. By interviewing these individuals and cross-referencing their answers with the literature this thesis wants to discover the pitfalls of federal government policy toward EHR implementation and EHR implementation in general. What this thesis found was that there are pitfalls that the federal government has failed to address including loss of provider productivity, lack of interoperability, and workflow improvement. However, the providers do say there is still a place for government to be involved in the implementation of EHR.
ContributorsKaldawi, Nicholas Emad (Author) / Lewis, Paul (Thesis director) / Cortese, Denis (Committee member) / Jones, Ruth (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2013-05