Matching Items (18)
Filtering by

Clear all filters

134295-Thumbnail Image.png
Description
Brown adipose tissue (BAT) is thought to be important in combating obesity as it can expend energy in the form of heat, e.g. thermogenesis. The goal of this study was to study the effect of injected norepinephrine (NE) on the activation of BAT in rats that were fed a high

Brown adipose tissue (BAT) is thought to be important in combating obesity as it can expend energy in the form of heat, e.g. thermogenesis. The goal of this study was to study the effect of injected norepinephrine (NE) on the activation of BAT in rats that were fed a high fat diet (HFD). A dose of 0.25 mg/kg NE was used to elicit a temperature response that was measured using transponders inserted subcutaneously over the BAT and lower back and intraperitoneally to measure the core temperature. The results found that the thermic effect of the BAT increased after the transition from low fat diet to a high fat diet (LFD) yet, after prolonged exposure to the HFD, the effects resembled levels found with the LFD. This suggests that while a HFD may stimulate the effect of BAT, long term exposure may have adverse effects on BAT activity. This may be due to internal factors that will need to be examined further.
ContributorsSion, Paul William (Author) / Herman, Richard (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
136200-Thumbnail Image.png
Description
There has been an alarming rise in the prevalence of obesity which has been attributed to the paralleled rise in consumption of high-fat foods. It’s commonly accepted that high-fat diets can lead to increased weight gain, however not all fats have the same physiological action. This study primarily focuses on

There has been an alarming rise in the prevalence of obesity which has been attributed to the paralleled rise in consumption of high-fat foods. It’s commonly accepted that high-fat diets can lead to increased weight gain, however not all fats have the same physiological action. This study primarily focuses on the effect of canola oil, a monounsaturated fat, on energy homeostasis and body composition when it’s given as a supplement to a high-fat diet composed of saturated fatty acid. Rodent models were divided into three dietary groups: 1) low-fat diet (LFD), 2) high-fat diet (HFD) and 3) canola oils supplemented HFD (HF+CAN). After 4 weeks of dietary intervention, samples of epididymal fat, perinephric fat, and liver were analyzed across the three groups to see if the changes in energy homeostasis could be explained by the cellular behavior and composition of these tissues. Interestingly, the supplement of canola oil appeared to reverse the deleterious effects of a saturated fat diet, reverting energy intake, body weight gain and adipose tissue sizes to that (if not lower than that) of the LFD group. The only exception to this effect was the liver: the livers remained larger and fattier than those of the HFD. This occurrence is possibly due to a decrease in free fatty acid uptake in the adipose tissues—resulting in smaller adipose tissue sizes—and increased fatty acid uptake in the liver. The mechanism by which this occurs has yet to be elucidated and will be the primary focus of upcoming studies on the effect of monounsaturated fat on other diets.
ContributorsZuo, Connie Wanda (Author) / Washo-Krupps, Delon (Thesis director) / Deviche, Pierre (Committee member) / Herman, Richard (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
134744-Thumbnail Image.png
Description
It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of

It is presently believed that brown adipose tissue (BAT) is an important tissue in the control of obesity because it has the propensity to increase energy expenditure. The purpose of this study was to attempt to quantify the thermogenesis of BAT when four rats were exposed to a progression of low-fat to high-fat diet. Exogenous norepinephrine (NE) injections (dose of 0.25 mg/kg i.p.) were administered in order to elicit a temperature response, where increases in temperature indicate increased activity. Temperatures were measured via temperature sensing transponders that had been inserted at the following three sites: interscapular BAT (iBAT), the abdomen (core), and lower back (reference). Data showed increased BAT activity during acute (2-3 weeks) high fat diet (HFD) in comparison to low fat diet (LFD), but a moderate to marked decrease in BAT activity during chronic HFD (6-8 weeks) when compared to acute HFD. This suggests that while a HFD may initially stimulate BAT in the short-term, a long-term HFD diet may have negative effects on BAT activation.
ContributorsSivak, Hanna (Author) / Sweazea, Karen (Thesis director) / Herman, Richard (Committee member) / Caplan, Michael (Committee member) / School of Life Sciences (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134685-Thumbnail Image.png
Description
Obesity is a rising problem in the country today, and countless efforts have been made to achieve long-term weight loss. Recent research indicates that through the manipulation of Brown Adipose Tissue (BAT) activity within the body, weight loss can be achieved. The goal of this experiment was to understand the

Obesity is a rising problem in the country today, and countless efforts have been made to achieve long-term weight loss. Recent research indicates that through the manipulation of Brown Adipose Tissue (BAT) activity within the body, weight loss can be achieved. The goal of this experiment was to understand the effects of a high-fat diet (HFD) on BAT activity and diet-induced thermogenesis in cold-stressed rats. It was predicted that the HFD would stimulate BAT activity and this would then drive up thermogenic activity to promote weight loss. Diet-induced thermogenesis was predicted to increase during the HFD phase of this experiment as the body would require more energy to digest the more calorically dense food. Upon arrival at six weeks of age, the rats were started on a low-fat diet (LFD) ad libitum for three weeks. They were then transitioned into a HFD ad libitum for the next 8 weeks. Throughout the experiment, the rats were maintained in a cold-stressed environment at 22°C. It was determined that one of the rats was identified as obesity prone, while the other three rats were obesity resistant based on the rate of weight gain and caloric intake. Obesity can decrease metabolism in the body for many reasons, yet it was not seen in this experiment that the obesity prone rat demonstrated decreased metabolism in comparison to the others. Based on the differences seen in the reference temperatures and the BAT temperatures, it was determined that the BAT was active throughout both the LFD and HFD phases. However, the BAT did not rise significantly during the HFD period as expected. More research is indicated with a larger sample size to determine if BAT activity does continue to increase during a HFD as a result of diet-induced thermogenesis.
ContributorsLubold, Jessica Marie Sarah (Author) / Morse, Lisa (Thesis director) / Herman, Richard (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133971-Thumbnail Image.png
Description
For the past couple decades, there has been a continuous rise in obesity and Type II Diabetes which has been attributed to the rise in calorically dense diets, especially those heavy in fats. Because of its rising prevalence, accompanied health concerns, and high healthcare costs, detection and therapies for these

For the past couple decades, there has been a continuous rise in obesity and Type II Diabetes which has been attributed to the rise in calorically dense diets, especially those heavy in fats. Because of its rising prevalence, accompanied health concerns, and high healthcare costs, detection and therapies for these metabolic diseases are in high demand. Insulin resistance is a typical hallmark of Type II Diabetes and the metabolic deficiencies in obesity and is the main focus of this project. The primary purpose of this study is (1) detect the presence of two types of insulin resistance (peripheral and hepatic) as a function of age, (2) distinguish if diet impacted the presence of insulin resistance, and (3) determine both the short-term and long-term effects of caloric restriction on metabolic health. The following study longitudinally observed the changes in insulin resistance in high-fat fed and low-fat fed rodents under ad libitum and caloric restriction conditions over the course of 23 weeks. Fasting blood glucose, fasting insulin, body weight, and sensitivity of insulin on tissue were monitored in order to determine peripheral and hepatic insulin resistance. A high fat diet resulted in higher body weights and higher hepatic insulin resistance with no notable effect on peripheral insulin resistance. Caloric restriction was found to alleviate insulin resistance both during caloric restriction and four weeks after caloric restriction ended. Due to sample size, the generalizability of the findings in this study are limited. However, the current study did provide considerable results and can be viewed as a pilot study for a larger-scale study.
ContributorsZuo, Dana (Author) / Trumble, Benjamin (Thesis director) / Herman, Richard (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133689-Thumbnail Image.png
Description
With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed that every two out of three adults in the United

With the influence of the Western Diet, obesity has become a rising problem in the country today. Western Diet is characterized by the overconsumption of processed food that is low in nutritional values and high in saturated fats. Study showed that every two out of three adults in the United States are either overweight or obese. Being obese increase the risk of many other disease such as diabetes, cardiovascular disease and insulin resistance. Besides being a great health concern, obesity is also cause a great financial burden. Many efforts have been made to understand the defense against obesity and weight loss. The goal of this study was to understand the characterization of food intake and weight gain responses when imposed on a high-fat diet (HFD) using rats. It was predicted that weight gain would be dependent on energy intake and it would have a significant effect on adiposity compared to energy intake. Data showed that energy intake had high significance with adiposity whereas weight gain showed no significance. Also for the rats that were on HFD, the obesity-prone (OP) rats exhibited a great amount of weight gain and energy intake while the obesity-resistance (OR) rats showed a similar weight gain to the controlled group on low-fat diet (LFD) despite being hyperphagic. This suggests that OR is characterized by equal weight gain despite hyperphagia but this alone cannot explain the boy defense against obesity. More research is needed with a larger sample size to understand weight gain responses in order to fight against the epidemic of obesity.
ContributorsMao, Samuel (Author) / Herman, Richard (Thesis director) / Baluch, Page (Committee member) / Lamb, Timothy (Committee member) / WPC Graduate Programs (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134903-Thumbnail Image.png
Description
Adaptive thermogenesis is an innate mechanism that assists the body in controlling its core temperature that can be stimulated in two ways: cold and diet. When adaptive thermogenesis is stimulated through diet, the metabolic rate of the body should increase and the metabolic efficiency of the body should decrease. This

Adaptive thermogenesis is an innate mechanism that assists the body in controlling its core temperature that can be stimulated in two ways: cold and diet. When adaptive thermogenesis is stimulated through diet, the metabolic rate of the body should increase and the metabolic efficiency of the body should decrease. This activation should, theoretically, help to control weight gain. A protocol was developed to study four male Sprague-Dawley rats throughout a fourteen week period through the measurement of brown adipose tissue blood flow and brown adipose tissue, back, and abdomen temperatures to determine if diet induced thermogenesis existed and could be activated through norepinephrine. The sedative used to obtain blood flow measurements, ketamine, was discovered to induce a thermal response prior to the norepinephrine injection by mimicking the norepinephrine response in the sympathetic nervous system. This discovery altered the original protocol to exclude an injection of norepinephrine, as this injection would have no further thermal effect. It was found that ketamine sedation excited diet induced thermogenesis in periods of youth, low fat diet, and early high fat diet. The thermogenic capacity was found to be at a peak of 2.1 degrees Celsius during this time period. The data also suggested that the activation of diet induced thermogenesis decreased as the period of high fat diet increased, and by week 4 of the high fat diet, almost all evidence of diet induced thermogenesis was suppressed. This indicated that diet induced thermogenesis is time and diet dependent. Further investigation will need to be made to determine if prolonged high fat diet or age suppress diet induced thermogenesis.
ContributorsJayo, Heather Lynn (Author) / Caplan, Michael (Thesis director) / Herman, Richard (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148130-Thumbnail Image.png
Description

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between these groups. Each fiber type is characterized by unique metabolic and contractile properties, which are largely determined by the myosin heavy chain isoform (MHC) or isoform combination that the fiber expresses. In previous studies, SDS-PAGE single fiber analysis has been utilized as a method to determine MHC isoform distribution and single fiber type distribution in skeletal muscle. Herein, a methodological approach to analyze MHC isoform and fiber type distribution in skeletal muscle was fine-tuned for use in human and rodent studies. In the future, this revised methodology will be implemented to evaluate the effects of obesity and exercise on the phenotypic fiber type composition of skeletal muscle.

ContributorsOhr, Jalonna Rose (Author) / Katsanos, Christos (Thesis director) / Tucker, Derek (Committee member) / Serrano, Nathan (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148147-Thumbnail Image.png
Description

Seven human subjects with body mass indices (BMIs) ranging from 19.4 kg/ m2 to 26.7 kg/ m2 and six human subjects with BMIs ranging from 32.1 kg/ m2 to 37.6 kg/ m2 were recruited and subjected to 45-minute bouts of acute exercise to look at the changes in the plasma

Seven human subjects with body mass indices (BMIs) ranging from 19.4 kg/ m2 to 26.7 kg/ m2 and six human subjects with BMIs ranging from 32.1 kg/ m2 to 37.6 kg/ m2 were recruited and subjected to 45-minute bouts of acute exercise to look at the changes in the plasma concentration of the dopamine metabolite homovanillic acid (HVA) in response to acute physical activity. Plasma HVA concentration was measured before exercise and during the last 10 minutes of the exercise bout via competitive ELISA. On average the optical density (OD) of the samples taken from lean subjects decreased from 0.203 before exercise to 0.192 during exercise, indicating increased plasma HVA concentration. In subjects with obesity OD increased from 0.210 before exercise to 0.219 during exercise, indicating reduced plasma HVA concentration. These differences in OD were not statistically significant. Between the lean group and the group with obesity no significant difference was observed between the OD of the plasma samples taken before exercise, but a significant difference (p = 0.0209) was observed between the ODs of the samples taken after exercise. This indicated that there was a significant difference between the percent changes in OD between the lean group and the group with obesity, which suggested that there may be a body weight-dependent difference in the amount of dopamine released in response to exercise. Because of the lack of significance in the changes in OD within the lean group and the group with obesity the results of this study were insufficient to conclude that this difference is not due to chance, but further investigation is warranted.

ContributorsYoder, Jordan Corinne (Author) / Katsanos, Christos (Thesis director) / Davies, Pauline (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147836-Thumbnail Image.png
Description

Since 1975, the prevalence of obesity has nearly tripled around the world. In 2016, 39% of adults, or 1.9 billion people, were considered overweight, and 13% of adults, or 650 million people, were considered obese. Furthermore, Cardiovascular disease remains to be the leading cause of death for adults in the

Since 1975, the prevalence of obesity has nearly tripled around the world. In 2016, 39% of adults, or 1.9 billion people, were considered overweight, and 13% of adults, or 650 million people, were considered obese. Furthermore, Cardiovascular disease remains to be the leading cause of death for adults in the United States, with 655,000 people dying from related conditions and consequences each year. Including fiber in one’s dietary regimen has been shown to greatly improve health outcomes in regards to these two areas of health. However, not much literature is available on the effects of corn-based fiber, especially detailing the individual components of the grain itself. The purpose of this preliminary study was to test the differences in influence on both LDL-cholesterol and triglycerides between treatments based on whole-grain corn flour, refined corn flour, and 50% refined corn flour + 50% corn bran derived from whole grain cornmeal (excellent fiber) in healthy overweight (BMI ≥ 25.0 kg/m2) adults (ages 18 - 70) with high LDL cholesterol (LDL ≥ 120mg/dL). 20 participants, ages 18 - 64 (10 males, 10 females) were involved. Data was derived from blood draws taken before and after each of the three treatments as well as before and after each treatment’s wash out periods. A general linear model was used to assess the effect of corn products on circulating concentrations of LDL-cholesterol and triglycerides. From the model, it was found that the whole-grain corn flour and the 50% refined corn flour + 50% corn bran drive from whole grain cornmeal treatments produced a higher, similar benefit in reductions in LDL-cholesterol. However, the whole grain flour, refined flour, and bran-based fiber treatments did not influence the triglyceride levels of the participants throughout this study. Further research is needed to elucidate the effects of these fiber items on cardiometabolic disease markers in the long-term as well as with a larger sample size.

ContributorsLe, Justin (Author) / Whisner, Corrie (Thesis director) / Ortega Santos, Carmen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05