Matching Items (58)
Filtering by

Clear all filters

152666-Thumbnail Image.png
Description
In adults, consuming a high-fat meal can induce endothelial dysfunction while exercise may mitigate postprandial endothelial dysfunction. Whether exercise is protective against postprandial endothelial dysfunction in obese youth is unknown. The purpose of this study was to determine if high-intensity interval exercise (HIIE) performed the evening prior to a high-fat

In adults, consuming a high-fat meal can induce endothelial dysfunction while exercise may mitigate postprandial endothelial dysfunction. Whether exercise is protective against postprandial endothelial dysfunction in obese youth is unknown. The purpose of this study was to determine if high-intensity interval exercise (HIIE) performed the evening prior to a high-fat meal protects against postprandial endothelial dysfunction in obese adolescent males. Fourteen obese adolescent males (BMI%tile=98.5±0.6; 14.3±1.0yrs) completed the study. After initial screening, participants arrived, fasted at 9:00 in the morning where brachial artery flow-mediated dilation (FMD) was measured using duplex ultrasound after 20min of supine rest (7.0±3.0%) and completed a maximal exercise test on a cycle ergometer (VO2peak=2.6±0.5 L/min). Participants were randomized and completed 2 conditions: a morning high-fat meal challenge with evening prior HIIE (EX+M) or a morning high-fat meal challenge without prior exercise (MO). The EX+M condition included a single HIIE session on a cycle ergometer (8 X 2min at ≥90%HRmax, with 2min active recovery between bouts, 42min total) which was performed at 17:00 the evening prior to the meal challenge. In both conditions, a mixed-meal was tailored to participants body weight consisting of 0.7g of fat/kg of body weight consumed (889±95kcal; 65% Fat, 30% CHO). FMD was measured at fasting (>10hrs) and subsequently measured at 2hr and 4hr after high-fat meal consumption. Exercise did not improve fasting FMD (7.5±3.0 vs. 7.4±2.8%, P=0.927; EX+M and MO, respectively). Despite consuming a high-fat meal, FMD was not reduced at 2hr (8.4±3.4 vs. 7.6±3.9%; EX+M and MO, respectively) or 4hr (8.8±3.9 vs. 8.6±4.0%; EX+M and MO, respectively) in either condition and no differences were observed between condition (p(condition*time)=0.928). These observations remained after adjusting for baseline artery diameter and shear rate. We observed that HIIE, the evening prior, had no effect on fasting or postprandial endothelial function when compared with a meal only condition. Future research should examine whether exercise training may be able to improve postprandial endothelial function rather than a single acute bout in obese youth.
ContributorsRyder, Justin Ross (Author) / Shaibi, Gabriel Q (Thesis advisor) / Gaesser, Glenn A (Committee member) / Vega-Lopez, Sonia (Committee member) / Crespo, Noe C (Committee member) / Katsanos, Christos (Committee member) / Arizona State University (Publisher)
Created2014
149777-Thumbnail Image.png
Description
Nut consumption, specifically almonds, have been shown to help maintain weight and influence disease risk factors in adult populations. Limited studies have been conducted examining the effect of a small dose of almonds on energy intake and body weight. The objective of this study was to determine the influence of

Nut consumption, specifically almonds, have been shown to help maintain weight and influence disease risk factors in adult populations. Limited studies have been conducted examining the effect of a small dose of almonds on energy intake and body weight. The objective of this study was to determine the influence of pre-meal almond consumption on energy intake and weight in overweight and obese adults. In this study included 21, overweight or obese, participants who were considered healthy or had a controlled disease state. This 8-week parallel arm study, participants were randomized to consume an isocaloric amount of almonds, (1 oz) serving, or two (2 oz) cheese stick serving, 30 minutes before the dinner meal, 5 times per week. Anthropometric measurements including weight, waist circumference, and body fat percentage were recorded at baseline, week 1, 4, and 8. Measurement of energy intake was self-reported for two consecutive days at week 1, 4 and 8 using the ASA24 automated dietary program. The energy intake after 8 weeks of almond consumption was not significantly different when compared to the control group (p=0.965). In addition, body weight was not significantly reduced after 8 weeks of the almond intervention (p=0.562). Other parameters measured in this 8-week trial did not differ between the intervention and the control group. These data presented are underpowered and therefore inconclusive on the effects that 1 oz of almonds, in the diet, 5 per week has on energy intake and bodyweight.
ContributorsMcBride, Lindsey (Author) / Johnston, Carol (Thesis advisor) / Swan, Pamela (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
Description
Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while

Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while other are nested between the myofibrils (i.e., intermyofibrillar (IMF) mitochondria). Functional and proteome differences specific to SS versus IMF mitochondria in obese individuals may contribute to reduced capacity for muscle ATP production seen in obesity. The overall goals of this work were to (1) isolate functional muscle SS and IMF mitochondria from lean and obese individuals, (2) assess enzyme activities associated with the electron transport chain and ATP production, (3) determine if elevated plasma amino acids enhance SS and IMF mitochondrial respiration and ATP production rates in SM of obese humans, and (4) determine differences in mitochondrial proteome regulating energy metabolism and key biological processes associated with SS and IMF mitochondria between lean and obese humans.

Polarography was used to determine functional differences in isolated SS and IMF mitochondria between lean (37 ± 3 yrs; n = 10) and obese (35 ± 3 yrs; n = 11) subjects during either saline (control) or amino acid (AA) infusions. AA infusion increased ADP-stimulated respiration (i.e., coupled respiration), non-ADP stimulated respiration (i.e., uncoupled respiration), and ATP production rates in SS, but not IMF mitochondria in lean (n = 10; P < 0.05). Neither infusion increased any of the above parameters in muscle SS or IMF mitochondria of the obese subjects.

Using label free quantitative mass spectrometry, we determined differences in proteomes of SM SS and IMF mitochondria between lean (33 ± 3 yrs; n = 16) and obese (32 ± 3 yrs; n = 17) subjects. Differentially-expressed mitochondrial proteins in SS versus IMF mitochondria of obese subjects were associated with biological processes that regulate: electron transport chain (P<0.0001), citric acid cycle (P<0.0001), oxidative phosphorylation (P<0.001), branched-chain amino acid degradation, (P<0.0001), and fatty acid degradation (P<0.001). Overall, these findings show that obesity is associated with redistribution of key biological processes within the mitochondrial reticulum responsible for regulating energy metabolism in human skeletal muscle.
ContributorsKras, Katon Anthony (Author) / Katsanos, Christos (Thesis advisor) / Chandler, Douglas (Committee member) / Dinu, Valentin (Committee member) / Mor, Tsafrir S. (Committee member) / Arizona State University (Publisher)
Created2017
156088-Thumbnail Image.png
Description
Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular

Obesity impairs skeletal muscle maintenance and regeneration, a condition that can progressively lead to muscle loss, but the mechanisms behind it are unknown. Muscle is primarily composed of multinucleated cells called myotubes which are derived by the fusion of mononucleated myocytes. A key mediator in this process is the cellular fusion protein syncytin-1. This led to the hypothesis that syncytin-1 could be decreased in the muscle of obese/insulin resistant individuals. In contrast, it was found that obese/insulin resistant subjects had higher syncytin-1 expression in the muscle compared to that of the lean subjects. Across the subjects, syncytin-1 correlated significantly with body mass index, percent body fat, blood glucose and HbA1c levels, insulin sensitivity and muscle protein fractional synthesis rate. The concentrations of specific plasma fatty acids, such as the saturated fatty acid (palmitate) and monounsaturated fatty acid (oleate) are known to be altered in obese/insulin resistant humans, and also to influence the protein synthesis in muscle. Therefore, it was evaluated that the effects of palmitate and oleate on syncytin-1 expression, as well as 4E-BP1 phosphorylation, a key mechanism regulating muscle protein synthesis in insulin stimulated C2C12 myotubes. The results showed that treatment with 20 nM insulin, 300 µM oleate, 300 µM oleate +20 nM insulin and 300 µM palmitate + 300 µM oleate elevated 4E-BP1 phosphorylation. At the same time, 20 nM insulin, 300 µM palmitate, 300 µM oleate + 20 nM insulin and 300 µM palmitate + 300 µM oleate elevated syncytin-1 expression. Insulin stimulated muscle syncytin-1 expression and 4E-BP1 phosphorylation, and this effect was comparable to that observed in the presence of oleate alone. However, the presence of palmitate + oleate diminished the stimulatory effect of insulin on muscle syncytin-1 expression and 4E-BP1 phosphorylation. These findings indicate oleate but not palmitate increased total 4E-BP1 phosphorylation regardless of insulin and the presence of palmitate in insulin mediated C2C12 cells. The presence of palmitate inhibited the upregulation of total 4EB-P1 phosphorylation. Palmitate but not oleate increased syncytin-1 expression in insulin mediated C2C12 myotubes. It is possible that chronic hyperinsulinemia in obesity and/or elevated levels of fatty acids such as palmitate in plasma could have contributed to syncytin-1 overexpression and decreased muscle protein fractional synthesis rate in obese/insulin resistant human muscle.
ContributorsRavichandran, Jayachandran (Author) / Katsanos, Christos (Thesis advisor) / Coletta, Dawn (Committee member) / Dickinson, Jared (Committee member) / Arizona State University (Publisher)
Created2017
157079-Thumbnail Image.png
Description
Objectives: To investigate the potential of vinegar supplementation as a means for reducing visceral fat in healthy overweight and obese adults, and to evaluate its effects on fasting blood glucose and fasting insulin.

Subjects and Methods: Forty-five sedentary overweight and obese adult participants with a waist circumference greater than 32

Objectives: To investigate the potential of vinegar supplementation as a means for reducing visceral fat in healthy overweight and obese adults, and to evaluate its effects on fasting blood glucose and fasting insulin.

Subjects and Methods: Forty-five sedentary overweight and obese adult participants with a waist circumference greater than 32 inches for women and 37 inches for men were randomly assigned to one of two groups, the vinegar group (VIN, n=21) or the control group (CON, n=24), and instructed to consume either two tablespoons of liquid red wine vinegar (3.6g acetic acid) or a control pill (0.0225g acetic acid) twice daily at the beginning of a meal for 8 weeks. Participants were also instructed to maintain normal diet and physical activity levels. Anthropometric measures, dual-energy x-ray absorptiometry (DXA) scans, blood samples, and 24-hour dietary recalls were collected at baseline and at end of trial. A compliance calendar was provided for daily tracking of vinegar supplementation.

Results: Compliance to vinegar supplementation averaged 92.7 ±13.3% among the VIN group and 89.1 ±18.9% among the CON group. There were no statistically significant differences in anthropometric measurements between baseline and week 8: weight (P=0.694), BMI (P=0.879), and waist circumference (P=0.871). Similarly, DXA scan data did not show significant changes in visceral fat (P=0.339) or total fat (P=0.294) between baseline and week 8. The VIN group had significant reductions in fasting glucose (P=0.003), fasting insulin (P <0.001), and homeostatic model assessment of insulin resistance scores (P <0.001) after treatment.

Conclusions: These data do not support the findings from previous studies that indicated a link between vinegar supplementation and increased fat metabolism, specifically visceral fat reduction.
ContributorsGonzalez, Lisa Ann (Author) / Johnston, Carol (Thesis advisor) / Mayol-Kreiser, Sandra (Committee member) / McCoy, Maureen (Committee member) / Arizona State University (Publisher)
Created2019
135573-Thumbnail Image.png
Description
Dogs' health and wellbeing is of great importance to their owners. The most common nutritional problem for pet dogs is obesity, with 22-40% of pet dogs being classified as overweight or obese. With many adverse health effects associated with obesity, this is a major concern for owners and veterinarians. The

Dogs' health and wellbeing is of great importance to their owners. The most common nutritional problem for pet dogs is obesity, with 22-40% of pet dogs being classified as overweight or obese. With many adverse health effects associated with obesity, this is a major concern for owners and veterinarians. The degree to which dogs enjoy consuming certain foods can have substantial implications for their body weight, so it is important to understand which aspects of foods make them appealing to dogs. This study aimed to determine whether nutritional aspects of commercial dog foods predict dogs' preferences for those foods. It was found that consumption preference is positively correlated with protein content (p < .001), therefore implying that the protein content of commercial dry dog foods may predict dogs' consumption preferences. Consumption preferences were not predicted by other available measures of food content or caloric value. Dogs' preference for foods high in protein content may be due to the satiating effect of protein. Since foods high in protein both reduce the amount of energy consumed and are found to be palatable to dogs, high-protein dog foods may offer a way for dog food manufacturers, veterinarians, and pet owners to combat obesity in pet dogs.
ContributorsPrevost, Emily Danielle (Author) / Wynne, Clive (Thesis director) / Hall, Nathaniel (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
134295-Thumbnail Image.png
Description
Brown adipose tissue (BAT) is thought to be important in combating obesity as it can expend energy in the form of heat, e.g. thermogenesis. The goal of this study was to study the effect of injected norepinephrine (NE) on the activation of BAT in rats that were fed a high

Brown adipose tissue (BAT) is thought to be important in combating obesity as it can expend energy in the form of heat, e.g. thermogenesis. The goal of this study was to study the effect of injected norepinephrine (NE) on the activation of BAT in rats that were fed a high fat diet (HFD). A dose of 0.25 mg/kg NE was used to elicit a temperature response that was measured using transponders inserted subcutaneously over the BAT and lower back and intraperitoneally to measure the core temperature. The results found that the thermic effect of the BAT increased after the transition from low fat diet to a high fat diet (LFD) yet, after prolonged exposure to the HFD, the effects resembled levels found with the LFD. This suggests that while a HFD may stimulate the effect of BAT, long term exposure may have adverse effects on BAT activity. This may be due to internal factors that will need to be examined further.
ContributorsSion, Paul William (Author) / Herman, Richard (Thesis director) / Borges, Chad (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
135420-Thumbnail Image.png
Description
Background: The prevalence of childhood obesity has disproportionately affected Latino youth and can be seen with an increase incidence of Type 2 Diabetes. This increase in obesity can be attributed to physical inactivity. Increases in social support and self-efficacy are independently related to increases in physical activity. A lifestyle intervention

Background: The prevalence of childhood obesity has disproportionately affected Latino youth and can be seen with an increase incidence of Type 2 Diabetes. This increase in obesity can be attributed to physical inactivity. Increases in social support and self-efficacy are independently related to increases in physical activity. A lifestyle intervention can lead to increases in social support, self-efficacy and physical activity. Objective/Hypothesis: The objective of this study was to determine whether a 12-week lifestyle intervention could increase social support, self-efficacy and physical activity in obese Latino adolescents that participated in the intervention. It was hypothesized that adolescents that participated in the intervention would increase self-efficacy, social support from family and friends, and physical activity compared to their control counterparts. Study Design/Participants: In a randomized control trial, there were 125 Latino (n= 60 experimental group; n= 65 control group; mean age = 15.17 +- 1.65 Males n = 60; n = 65 females) participants included in this study. Participants were also required to have a BMI percentile >= 95th percentile for age and gender or BMI >= 30 kg/m2. Methods: The intervention, which was developed using the Social Cognitive Theory had components focusing on social support and self-efficacy and also consisted of nutrition education classes and physical activity sessions for 12 weeks. The psychosocial constructs of self-efficacy and social support were measured using the Adolescent Self-Efficacy for Diet and Activity Behaviors and Adolescent Social Support for Diet and Exercise Survey, respectively. Physical activity was assessed by the 3-day Physical Activity Recall. Results: We found significant increases in social support in family (p = 0.042) and vigorous physical activity (p = 0.001). There was also a significant difference between control and treatment group for moderate to vigorous physical activity after the intervention (p = 0.027). There were no changes in social support from friends or self-efficacy. Conclusion: We concluded that a 12-week lifestyle intervention did lead to changes in social support and physical activity behaviors. These changes could have been influenced by the intervention as they were measured these constructs pre/post intervention.
ContributorsRahman, Hanna (Author) / Shaibi, Gabriel (Thesis director) / Hoffner, Kristin (Committee member) / School of Nutrition and Health Promotion (Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135652-Thumbnail Image.png
Description
Epigenetic mechanisms such as DNA methylation have been found to affect metabolic processes, which leads to conditions like type 2 diabetes and obesity. The aim of this project was to validate differentially methylated cytosines (DMCs) identified in skeletal muscle from seven obese, non-diabetic women pre- and 3 months post- Roux-en-Y

Epigenetic mechanisms such as DNA methylation have been found to affect metabolic processes, which leads to conditions like type 2 diabetes and obesity. The aim of this project was to validate differentially methylated cytosines (DMCs) identified in skeletal muscle from seven obese, non-diabetic women pre- and 3 months post- Roux-en-Y gastric bypass surgery. DNA samples extracted from skeletal muscle were sent to the Mayo Genotyping Core to undergo reduced representation bisulfite sequencing (RRBS). Differentially methylated cytosines at chr14.105353824 of the gene CEP170B, chr19.16437949 of the KLF2 gene, chr7.130126082 of MEST, and chr15.62457572 of C2CD4B were captured from the RRBS analysis using MethylSig. Bisulfite sequencing PCR (BSP) was performed on all DMCs listed above which resulted in no significant changes in methylation post-surgery. It was concluded that an alternate, more precise method should be used for validation of the RRBS, such as pyrosequencing.
ContributorsKelley, Conley Lane (Author) / Coletta, Dawn K. (Thesis director) / Roust, Lori R. (Committee member) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136663-Thumbnail Image.png
Description
Obesity has become a major area of research in many fields due to the increasing obesity rate not only in The United States, but also around the world. Research concerning obesity stigma has both physical and mental health implications. Weight bias and obesity stigma represent important research areas for health

Obesity has become a major area of research in many fields due to the increasing obesity rate not only in The United States, but also around the world. Research concerning obesity stigma has both physical and mental health implications. Weight bias and obesity stigma represent important research areas for health professionals as they confront these issues on a daily basis in interactions with their patients. To explore how gender, ethnicity, and a person's own BMI affect the stigma of certain weight related terms, a set of 264 participant's surveys on weight related situations on the campus of Arizona State University were analyzed. Using univariate analysis to determine frequency of words deemed most or least acceptable as well as independent t-test for gender and ANOVA for ethnicity and own BMI, we found that participant's view more clinical terms such as "unhealthy BMI" and "BMI" as acceptable words for use during a physician-patient interaction. Analysis across genders revealed the highest number of differences in terms, with females generally ranking terms across the board as less acceptable then men. Differences varied little between ethnicities; however, own BMI revealed more differences between terms; underweight participants did not rank any terms as positive. We analyzed average ATOP (Attitudes Toward Obese People) scores and found that there was no significant difference in average ATOP scores between gender and a participant's own BMI, but a statistical significance did exist between ethnic categories. This study showed that the term "obese/obesity", although normally considered to be a clinical term by many was not ranked as very positive across gender, ethnicity, or own BMI. Based on these findings, new material should be created to inform physicians on how to talk about weight related problems with certain populations of patients.
ContributorsBlasco, Drew Adair (Author) / Wutich, Amber (Thesis director) / Brewis Slade, Alexandra (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / Department of Psychology (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-12