Matching Items (34)
Filtering by

Clear all filters

135573-Thumbnail Image.png
Description
Dogs' health and wellbeing is of great importance to their owners. The most common nutritional problem for pet dogs is obesity, with 22-40% of pet dogs being classified as overweight or obese. With many adverse health effects associated with obesity, this is a major concern for owners and veterinarians. The

Dogs' health and wellbeing is of great importance to their owners. The most common nutritional problem for pet dogs is obesity, with 22-40% of pet dogs being classified as overweight or obese. With many adverse health effects associated with obesity, this is a major concern for owners and veterinarians. The degree to which dogs enjoy consuming certain foods can have substantial implications for their body weight, so it is important to understand which aspects of foods make them appealing to dogs. This study aimed to determine whether nutritional aspects of commercial dog foods predict dogs' preferences for those foods. It was found that consumption preference is positively correlated with protein content (p < .001), therefore implying that the protein content of commercial dry dog foods may predict dogs' consumption preferences. Consumption preferences were not predicted by other available measures of food content or caloric value. Dogs' preference for foods high in protein content may be due to the satiating effect of protein. Since foods high in protein both reduce the amount of energy consumed and are found to be palatable to dogs, high-protein dog foods may offer a way for dog food manufacturers, veterinarians, and pet owners to combat obesity in pet dogs.
ContributorsPrevost, Emily Danielle (Author) / Wynne, Clive (Thesis director) / Hall, Nathaniel (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136798-Thumbnail Image.png
Description
The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be

The purpose of this project was to examine the viability of protein biomarkers in pre-symptomatic detection of lung cancer. Regular screening has been shown to vastly improve patient survival outcome. Lung cancer currently has the highest occurrence and mortality of all cancers and so a means of screening would be highly beneficial. In this research, the biomarker neuron-specific enolase (Enolase-2, eno2), a marker of small-cell lung cancer, was detected at varying concentrations using electrochemical impedance spectroscopy in order to develop a mathematical model of predicting protein expression based on a measured impedance value at a determined optimum frequency. The extent of protein expression would indicate the possibility of the patient having small-cell lung cancer. The optimum frequency was found to be 459 Hz, and the mathematical model to determine eno2 concentration based on impedance was found to be y = 40.246x + 719.5 with an R2 value of 0.82237. These results suggest that this approach could provide an option for the development of small-cell lung cancer screening utilizing electrochemical technology.
ContributorsEvans, William Ian (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136810-Thumbnail Image.png
Description
This project explores a variety of ways of framing the problem of obesity, beginning with a multidisciplinary assessment of genetic, environmental, cultural, nutritional, and socioeconomic factors involved in the structure and the consequences of each frame. How obesity is framed as a problem has a profound impact on the kinds

This project explores a variety of ways of framing the problem of obesity, beginning with a multidisciplinary assessment of genetic, environmental, cultural, nutritional, and socioeconomic factors involved in the structure and the consequences of each frame. How obesity is framed as a problem has a profound impact on the kinds of solutions that may be deemed scientifically appropriate. But frames are not entirely evidence-based, inasmuch as political and moral values infuse debates about the nature of obesity. Drawing on interdisciplinary resources from bioethics and the philosophy of science, I strive to offer strategic insight in to how to navigate the complexity of these issues.
ContributorsYanamandra, Meghana (Author) / Robert, Jason (Thesis director) / Wharton, Christopher (Committee member) / Drago, Mary (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-05
136319-Thumbnail Image.png
Description
Obesity is a growing issue in the Western world, as well as other international countries. This is leading to increases in complications associated with obesity. One such complication is osteoarthritis (OA) of load bearing joints that requires surgical treatment by total knee arthroplasty (TKA). Obesity is also associated with an

Obesity is a growing issue in the Western world, as well as other international countries. This is leading to increases in complications associated with obesity. One such complication is osteoarthritis (OA) of load bearing joints that requires surgical treatment by total knee arthroplasty (TKA). Obesity is also associated with an increase in surgical complications that may lead to poor TKA outcomes. Additionally, the female gender is also known to be associated with increased rates of severe, clinical OA. This study was designed to determine the comparative efficacy of two knee implants in the obese female population through retrospective chart review and data analysis. The implants differ in their level of constraint, with the total stabilizing (TS) being more constrained than the posterior stabilizing (PS). We hypothesized that the TS implants would be associated with improved functional outcomes in the obese female population. The TS implant was observed to be associated with earlier improvement of both passive and active range of motion. This implant also showed greater improvement from pre-operative condition in stability, rejecting our null hypothesis and supporting our hypothesis.
ContributorsWorhacz, Kellen Michael (Author) / Hinrichs, Richard (Thesis director) / Jacofsky, Marc (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136200-Thumbnail Image.png
Description
There has been an alarming rise in the prevalence of obesity which has been attributed to the paralleled rise in consumption of high-fat foods. It’s commonly accepted that high-fat diets can lead to increased weight gain, however not all fats have the same physiological action. This study primarily focuses on

There has been an alarming rise in the prevalence of obesity which has been attributed to the paralleled rise in consumption of high-fat foods. It’s commonly accepted that high-fat diets can lead to increased weight gain, however not all fats have the same physiological action. This study primarily focuses on the effect of canola oil, a monounsaturated fat, on energy homeostasis and body composition when it’s given as a supplement to a high-fat diet composed of saturated fatty acid. Rodent models were divided into three dietary groups: 1) low-fat diet (LFD), 2) high-fat diet (HFD) and 3) canola oils supplemented HFD (HF+CAN). After 4 weeks of dietary intervention, samples of epididymal fat, perinephric fat, and liver were analyzed across the three groups to see if the changes in energy homeostasis could be explained by the cellular behavior and composition of these tissues. Interestingly, the supplement of canola oil appeared to reverse the deleterious effects of a saturated fat diet, reverting energy intake, body weight gain and adipose tissue sizes to that (if not lower than that) of the LFD group. The only exception to this effect was the liver: the livers remained larger and fattier than those of the HFD. This occurrence is possibly due to a decrease in free fatty acid uptake in the adipose tissues—resulting in smaller adipose tissue sizes—and increased fatty acid uptake in the liver. The mechanism by which this occurs has yet to be elucidated and will be the primary focus of upcoming studies on the effect of monounsaturated fat on other diets.
ContributorsZuo, Connie Wanda (Author) / Washo-Krupps, Delon (Thesis director) / Deviche, Pierre (Committee member) / Herman, Richard (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136206-Thumbnail Image.png
Description
To identify genes that can lead to obesity of Pima Native American heritage, an array of experiments can be conducted to determine possible candidate genes that can increase the likelihood of being obese in a set population. The studies available to identify these genes were (1) inspect follow-up genes identified

To identify genes that can lead to obesity of Pima Native American heritage, an array of experiments can be conducted to determine possible candidate genes that can increase the likelihood of being obese in a set population. The studies available to identify these genes were (1) inspect follow-up genes identified by a previous genome wide associations studies, GWAS, previously conducted for the 1120 American Indian subjects data available, (2) to directly sequence candidate genes in literature, (3) to analyze whole sequence data from Native American subjects, and lastly (4) to perform functional studies on most promising variants associated with BMI. Analyzing the results presented from my work required the use of biological techniques such as: DNA sequencing, DNA large scale genotyping, PCR amplification, DNA transfections, DNA ligations, in vitro Luciferase assay and Cell culture. Inspecting the follow-up genes identified by the conducted GWAS showed the potential for the MAP2K3 gene to be a candidate to increase obesity in the set population, involve two single nucleotide polymorphisms (SNPs, rs12882548, rs11652094), to affect body weight through complex mechanisms involving food intake and hypothalamic inflammation. The follow-up genes identified in the GWAS that had an effect on obesity showed to affect it through the mechanism of reducing energy expenditure. Through the analysis of SNPs two variants (rs10507100 and rs17087518) were identified to test their roles in the reduction of energy expenditure. Rs17087518 showed to have a role in a relatively reduced EE resulting in weight gain. Directly sequencing a candidate gene known as MRAP2 showed that the SNP rs1928281 did not have a significant difference on obesity in the Native American subjects (p =.09). Analyzing whole genome sequencing SNPs gave rise to novel variants by association analyses with energy expenditure and BMI in 235 whole genomes, the most significant SNP, rs4984683, was examined to determine the variability in energy expenditures. With set quality control assessment a list of variants were received and were then later assessed with other data available to make a connection to EE. Performing functional studies showed the possibility for rs2001651 and rs1466314 to have an effect on MAP2K3 expression level. The initial functional studies gave way to a more in-depth study of this gene to predict BMI in Caucasians and Native Americans, which in turn showed an association with BMI. The use of these techniques have been an indicator for current research in the determination of candidate genes across many diseases. The works presented is an example of the current works in genetics and an exploration of new mechanism to detect, and possibly treat, disease through personalized sequencing.
ContributorsGale, Alex Mauricio Pompa (Author) / Ankeny, Casey (Thesis director) / Baier, Leslie (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
137315-Thumbnail Image.png
Description
In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk electrodes to find the optimal binding frequency of estradiol and its respective antibody, anti-17β-estradiol, which was determined to be 37.46Hz.

In this paper, β-estradiol was characterized utilizing electrochemical impedance spectroscopy (EIS) techniques for the purpose of developing a multi-marker fertility sensor. β-estradiol was immobilized onto the surface of gold disk electrodes to find the optimal binding frequency of estradiol and its respective antibody, anti-17β-estradiol, which was determined to be 37.46Hz. At this frequency a logarithmic relationship between concentration and impedance (Z/ohm) was established creating a concentration calibration curve with a slope of 211 ohm/ln(pg mL-1), an R-squared value of 0.986 and a lower limit of detection of 742 fg mL-1. The specificity and cross-reactivity of the antibody with other hormones was tested through interferent and non-target experiments. Signal-to-noise ratio analysis verified that anti-17β-estradiol exhibited minimal chemical reactions with other hormones (SNR< 3) in non-target experiments. Additionally, there were minimal changes in the amount of signal collected during interferent testing, with albumin and follicle stimulating hormone having SNR values greater than 3. These results, along with the unique frequency response of the antibody-target binding reaction, allow for the possibility of using anti-17β-estradiol and β-estradiol for detecting multiple fertility biomarkers on a single sensor.
ContributorsSmith, Victoria Ann (Author) / LaBelle, Jeffrey (Thesis director) / Spano, Mark (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137263-Thumbnail Image.png
Description
Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was

Diabetes mellitus is a disease characterized by many chronic and acute conditions. With the prevalence and cost quickly increasing, we seek to improve on the current standard of care and create a rapid, label free sensor for glycated albumin (GA) index using electrochemical impedance spectroscopy (EIS). The antibody, anti-HA, was fixed to gold electrodes and a sine wave of sweeping frequencies was induced with a range of HA, GA, and GA with HA concentrations. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for both the antibody-antigen binding interactions with HA and GA and was determined to be 1476 Hz and 1.18 Hz respectively in purified solutions. The correlation slope between the impedance response and concentration for albumin (0 \u2014 5400 mg/dL of albumin) was determined to be 72.28 ohm/ln(mg/dL) with an R-square value of 0.89 with a 2.27 lower limit of detection. The correlation slope between the impedance response and concentration for glycated albumin (0 \u2014 108 mg/dL) was determined to be -876.96 ohm/ln(mg/dL) with an R-squared value of 0.70 with a 0.92 mg/dL lower limit of detection (LLD). The above data confirms that EIS offers a new method of GA detection by providing unique correlation with albumin as well as glycated albumin. The unique frequency response of GA and HA allows for modulation of alternating current signals so that several other markers important in the management of diabetes could be measured with a single sensor. Future work will be necessary to establish multimarker sensing on one electrode.
ContributorsEusebio, Francis Ang (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
137400-Thumbnail Image.png
Description
DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body.

DNA methylation, a subset of epigenetics, has been found to be a significant marker associated with variations in gene expression and activity across the entire human genome. As of now, however, there is little to no information about how DNA methylation varies between different tissues inside a singular person's body. By using research data from a preliminary study of lean and obese clinical subjects, this study attempts to put together a profile of the differences in DNA methylation that can be observed between two particular body tissues from this subject group: blood and skeletal muscle. This study allows us to start describing the changes that occur at the epigenetic level that influence how differently these two tissues operate, along with seeing how these tissues change between individuals of different weight classes, especially in the context of the development of symptoms of Type 2 Diabetes.
ContributorsRappazzo, Micah Gabriel (Author) / Coletta, Dawn (Thesis director) / Katsanos, Christos (Committee member) / Dinu, Valentin (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2013-12
137088-Thumbnail Image.png
Description
Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom

Acetaminophen, commonly found in Tylenol and other over the counter (OTC) pharmaceuticals, was electrochemically characterized on custom made, flexible, screen printed electrodes (SPEs) to serve as a model target pharmaceutical found in flowing water lines. Carbon, silver/silver chloride, and insulator paste inks were printed onto polyethylene naphthalateolyester (PEN) using custom made stencils for a 4x1 array of 3-electrode electrochemical cells. Cyclic voltammetry was performed to find the electrical potential corresponding to the greatest current response and the experiments were conducted using amperometric current-time mode (AMP*i-t). The physical limitations of SPEs as well as the detection limitations of the target, such as pH and temperature were tested. A concentration gradient of the target was fitted with a linear curve (R2 0.99), and a lower limit of detection of 14.5 μM. It was also found that both pH and temperature affect the current produced by acetaminophen at a fixed concentration, and that the sensors can detect target in a continuous flow. A flow apparatus consisting of an inlet and effluent pipe served as the flow model into which a rolled up flexible electrode array was inserted. The broader goal of this research is to develop a highly sensitive electrode array on flexible substrates which can detect multiple targets simultaneously. Acetaminophen was chosen due to its electro-active properties and its presence in most public water lines in the United States.
ContributorsMaxwell, Stephanie Ann (Author) / LaBelle, Jeffrey (Thesis director) / Allee, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05