Matching Items (20)
Filtering by

Clear all filters

148130-Thumbnail Image.png
Description

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between

Over 40% of adults in the United States are considered obese. Obesity is known to cause abnormal metabolic effects and lead to other negative health consequences. Interestingly, differences in metabolism and contractile performance between obese and healthy weight individuals are associated with differences in skeletal muscle fiber type composition between these groups. Each fiber type is characterized by unique metabolic and contractile properties, which are largely determined by the myosin heavy chain isoform (MHC) or isoform combination that the fiber expresses. In previous studies, SDS-PAGE single fiber analysis has been utilized as a method to determine MHC isoform distribution and single fiber type distribution in skeletal muscle. Herein, a methodological approach to analyze MHC isoform and fiber type distribution in skeletal muscle was fine-tuned for use in human and rodent studies. In the future, this revised methodology will be implemented to evaluate the effects of obesity and exercise on the phenotypic fiber type composition of skeletal muscle.

ContributorsOhr, Jalonna Rose (Author) / Katsanos, Christos (Thesis director) / Tucker, Derek (Committee member) / Serrano, Nathan (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147836-Thumbnail Image.png
Description

Since 1975, the prevalence of obesity has nearly tripled around the world. In 2016, 39% of adults, or 1.9 billion people, were considered overweight, and 13% of adults, or 650 million people, were considered obese. Furthermore, Cardiovascular disease remains to be the leading cause of death for adults in the

Since 1975, the prevalence of obesity has nearly tripled around the world. In 2016, 39% of adults, or 1.9 billion people, were considered overweight, and 13% of adults, or 650 million people, were considered obese. Furthermore, Cardiovascular disease remains to be the leading cause of death for adults in the United States, with 655,000 people dying from related conditions and consequences each year. Including fiber in one’s dietary regimen has been shown to greatly improve health outcomes in regards to these two areas of health. However, not much literature is available on the effects of corn-based fiber, especially detailing the individual components of the grain itself. The purpose of this preliminary study was to test the differences in influence on both LDL-cholesterol and triglycerides between treatments based on whole-grain corn flour, refined corn flour, and 50% refined corn flour + 50% corn bran derived from whole grain cornmeal (excellent fiber) in healthy overweight (BMI ≥ 25.0 kg/m2) adults (ages 18 - 70) with high LDL cholesterol (LDL ≥ 120mg/dL). 20 participants, ages 18 - 64 (10 males, 10 females) were involved. Data was derived from blood draws taken before and after each of the three treatments as well as before and after each treatment’s wash out periods. A general linear model was used to assess the effect of corn products on circulating concentrations of LDL-cholesterol and triglycerides. From the model, it was found that the whole-grain corn flour and the 50% refined corn flour + 50% corn bran drive from whole grain cornmeal treatments produced a higher, similar benefit in reductions in LDL-cholesterol. However, the whole grain flour, refined flour, and bran-based fiber treatments did not influence the triglyceride levels of the participants throughout this study. Further research is needed to elucidate the effects of these fiber items on cardiometabolic disease markers in the long-term as well as with a larger sample size.

ContributorsLe, Justin (Author) / Whisner, Corrie (Thesis director) / Ortega Santos, Carmen (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147937-Thumbnail Image.png
Description

During the COVID-19 pandemic, increased burdens have been placed on the Arizona healthcare system, and its healthcare providers. Using a survey with a sample of N=308 prescribing providers and nurses in the Arizona healthcare system, the impact of COVID-19 on the wellbeing of healthcare providers was assessed. The survey used

During the COVID-19 pandemic, increased burdens have been placed on the Arizona healthcare system, and its healthcare providers. Using a survey with a sample of N=308 prescribing providers and nurses in the Arizona healthcare system, the impact of COVID-19 on the wellbeing of healthcare providers was assessed. The survey used measures to evaluate for physical and emotional wellbeing, burnout, stressors associated with COVID-19, and work-life experiences, and found an overall negative impact on the wellbeing of healthcare workers during the COVID-19 pandemic with increased levels of reported stress and tiredness, concern for the health of family and loved ones, concern for the hardships of patients, lack of alignment between organizational priorities and personal values, and low levels of support and appreciation from socially and from leadership at work.

ContributorsJohnson, Emma Carina (Author) / Schuster, Roseanne (Thesis director) / Michalec, Barret (Committee member) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148187-Thumbnail Image.png
Description

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf

The COVID-19 pandemic has resulted in preventative measures and has led to extensive changes in lifestyle for the vast majority of the American population. As the pandemic progresses, a growing amount of evidence shows that minority groups, such as the Deaf community, are often disproportionately and uniquely affected. Deaf people are directly affected in their ability to personally socialize and continue with daily routines. More specifically, this can constitute their ability to meet new people, connect with friends/family, and to perform in their work or learning environment. It also may result in further mental health changes and an increased reliance on technology. The impact of COVID-19 on the Deaf community in clinical settings must also be considered. This includes changes in policies for in-person interpreters and a rise in telehealth. Often, these effects can be representative of the pre-existing low health literacy, frequency of miscommunication, poor treatment, and the inconvenience felt by Deaf people when trying to access healthcare. Ultimately, these effects on the Deaf community must be taken into account when attempting to create a full picture of the societal shift caused by COVID-19.

ContributorsDubey, Shreya Shashi (Co-author) / Asuncion, David Leonard (Co-author) / Patterson, Lindsey (Thesis director) / Lee, Lindsay (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148147-Thumbnail Image.png
Description

Seven human subjects with body mass indices (BMIs) ranging from 19.4 kg/ m2 to 26.7 kg/ m2 and six human subjects with BMIs ranging from 32.1 kg/ m2 to 37.6 kg/ m2 were recruited and subjected to 45-minute bouts of acute exercise to look at the changes in the plasma

Seven human subjects with body mass indices (BMIs) ranging from 19.4 kg/ m2 to 26.7 kg/ m2 and six human subjects with BMIs ranging from 32.1 kg/ m2 to 37.6 kg/ m2 were recruited and subjected to 45-minute bouts of acute exercise to look at the changes in the plasma concentration of the dopamine metabolite homovanillic acid (HVA) in response to acute physical activity. Plasma HVA concentration was measured before exercise and during the last 10 minutes of the exercise bout via competitive ELISA. On average the optical density (OD) of the samples taken from lean subjects decreased from 0.203 before exercise to 0.192 during exercise, indicating increased plasma HVA concentration. In subjects with obesity OD increased from 0.210 before exercise to 0.219 during exercise, indicating reduced plasma HVA concentration. These differences in OD were not statistically significant. Between the lean group and the group with obesity no significant difference was observed between the OD of the plasma samples taken before exercise, but a significant difference (p = 0.0209) was observed between the ODs of the samples taken after exercise. This indicated that there was a significant difference between the percent changes in OD between the lean group and the group with obesity, which suggested that there may be a body weight-dependent difference in the amount of dopamine released in response to exercise. Because of the lack of significance in the changes in OD within the lean group and the group with obesity the results of this study were insufficient to conclude that this difference is not due to chance, but further investigation is warranted.

ContributorsYoder, Jordan Corinne (Author) / Katsanos, Christos (Thesis director) / Davies, Pauline (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147542-Thumbnail Image.png
Description

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions, like Arizona State University (ASU), to make strategic and operational

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions, like Arizona State University (ASU), to make strategic and operational changes to combat the SARS-CoV-2 pandemic. At ASU, information technology was one of the six facets identified in the ongoing review of the ASU Biodesign Clinical Testing Laboratory (ABCTL) among business, communications, management/training, law, and clinical analysis. The first chapter of this manuscript covers the background of clinical laboratory automation and details the automated laboratory workflow to perform ABCTL’s COVID-19 diagnostic testing. The second chapter discusses the usability and efficiency of key information technology systems of the ABCTL. The third chapter explains the role of quality control and data management within ABCTL’s use of information technology. The fourth chapter highlights the importance of data modeling and 10 best practices when responding to future public health emergencies.

ContributorsLeung, Michael (Co-author) / Kandan, Mani (Co-author) / Knox, Garrett (Co-author) / Woo, Sabrina (Co-author) / Compton, Carolyn (Thesis director) / Dudley, Sean (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

COVID-19 misinformation covers a wide range of topics such as fatality rate, mask effectiveness, potential cures, vaccine development, and the idea of a "plandemic". The spread of this misinformation happens at a rapid speed with the help of social media and powerful influencers, including major political figures. This thesis is

COVID-19 misinformation covers a wide range of topics such as fatality rate, mask effectiveness, potential cures, vaccine development, and the idea of a "plandemic". The spread of this misinformation happens at a rapid speed with the help of social media and powerful influencers, including major political figures. This thesis is a focused case study on hydroxychloroquine, and builds a timeline of the misinformation surrounding the drug. From poorly conducted studies to the use of false experts, this study reveals how politicized misinformation garners more public attention than the actual science.

ContributorsPitts, Benjamin Jack (Author) / Ingram-Waters, Mary (Thesis director) / Hurlbut, Ben (Committee member) / School of Molecular Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
130886-Thumbnail Image.png
Description
Coronavirus disease 2019 (COVID-19), an illness caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has been responsible for significant social and economic
disruption, prompting an urgent search for therapeutic solutions. The spike protein of the virus
has been examined as an immunogenic target because of its role in viral binding and fusion
necessary

Coronavirus disease 2019 (COVID-19), an illness caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has been responsible for significant social and economic
disruption, prompting an urgent search for therapeutic solutions. The spike protein of the virus
has been examined as an immunogenic target because of its role in viral binding and fusion
necessary for infection of host cells. Previous studies have identified a recombinant protein
(denoted as S1) that has been shown to potentially induce a neutralizing antibody response by
mimicking the structure of the SARS-CoV-2 spike protein. We have produced the S1 in plants
using agroinfiltration, a plant transformation technique whereby plasmid-containing
Agrobacterium tumefaciens is injected into Nicotiana benthamiana plants, resulting in transfer of
the desired gene from bacteria to plant cells. S1 was expressed to high levels within 5 days of
infiltration, and Western blot analysis showed recognition of the S1 by an anti-S1 antibody.
ELISA results exhibited increased binding activity to anti-S1 with increasing concentrations of
S1, indicating their specific interaction. This ongoing study will demonstrate the potential of a
plant-produced S1 as a vaccine, therapeutic, and diagnostic tool against COVID-19 that is not
only effective, but also cost-efficient and scalable in comparison to conventional mammalian cell
culture production methods.
ContributorsNguyen, Katherine (Author) / Chen, Qiang (Thesis director) / Ghirlanda, Giovanna (Committee member) / Jugler, Collin (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
131018-Thumbnail Image.png
Description
Excessive weight gain, otherwise known as obesity, has become a pervasive medical condition throughout the world. Though caloric restriction (CR) results in weight reduction, this weight loss is often unsustainable in the long term. As such, the goal is to find a treatment that can maintain the results of restricted

Excessive weight gain, otherwise known as obesity, has become a pervasive medical condition throughout the world. Though caloric restriction (CR) results in weight reduction, this weight loss is often unsustainable in the long term. As such, the goal is to find a treatment that can maintain the results of restricted energy intake (EI). Studies have found that dietary menthol could be a possible treatment and preventative measure for excessive weight gain. While several studies have found that, as an agonist of TRPM8, dietary menthol increases the energy expenditure (EE) of the body without impacting EI, they have not studied the efficacy of dietary menthol in preventing weight regain (WR) following a period of CR. Methods used in this experiment include studying young Sprague-Dawley rats during 24-hour periods towards the end of the following three phases: (1) an experimental phase of 12 weeks, comprised of ad-libitum feeding of high fat diet (HFD) to 10 rats and chow diet to 4 rats, (2) a CR phase of 4-weeks with controlled feeding of the HFD rats with either a chow diet (n=4) or chow diet + 0.5% dietary menthol (n=6) and keeping the other rats on chow (n=4), and (3) a WR period of 4-weeks with ad libitum feeding of the same diets as in CR. EI and EE (via indirect calorimetry) were measured over 24-hour periods and were divided by the rat’s respective body weight (BW) on testing day to normalize the sample population. The energy gap (EG) was determined by subtracting EE from EI. The experimental and WR phase revealed a positive EG or energy balance (EI > EE) whereas CR yielded a negative EG or energy balance (EI
ContributorsWest, Kynzie Michelle (Author) / Herman, Richard (Thesis director) / Molenaar, Sydney (Committee member) / Johnsson, Kailin (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
132690-Thumbnail Image.png
Description
Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is

Diabesity is a global epidemic affecting millions worldwide. Diabesity is the term given to the link between obesity and Type II diabetes. It is estimated that ~90% of patients diagnosed with Type II diabetes are overweight or have struggled with excess body fat in the past. Type II diabetes is characterized by insulin resistance which is an impaired response of the body to insulin that leads to high blood glucose levels. Adipose tissue, previously thought of as an inert tissue, is now recognized as a major endocrine organ with an important role in the body's immune response and the development of chronic inflammation. It is speculated that adipose tissue inflammation is a major contributor to insulin resistance particular to Type II diabetes. This literature review explores the popular therapeutic targets and marketed drugs for the treatment of Type II diabetes and their role in decreasing adipose tissue inflammation. rAGE is currently in pre-clinical studies as a possible target to combat adipose tissue inflammation due to its relation to insulin resistance. Metformin and Pioglitazone are two drugs already being marketed that use unique chemical pathways to increase the production of insulin and/or decrease blood glucose levels. Sulfonylureas is one of the first FDA approved drugs used in the treatment of Type II diabetes, however, it has been discredited due to its life-threatening side effects. Bariatric surgery is a form of invasive surgery to rid the body of excess fat and has shown to normalize blood glucose levels. These treatments are all secondary to lifestyle changes, such as diet and exercise which can help halt the progression of Type II diabetes patients.
ContributorsRobles, Alondra Maria (Author) / Woodbury, Neal (Thesis director) / Redding, Kevin (Committee member) / Allen, James (Committee member) / Hendrickson, Kirstin (Committee member) / Sanford School of Social and Family Dynamics (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05