Matching Items (3)
Filtering by

Clear all filters

133891-Thumbnail Image.png
Description
The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks. Young adult, male Sprague Dawley rats underwent restraint stress using

The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks. Young adult, male Sprague Dawley rats underwent restraint stress using wire mesh (6hr/daily) for five days with two days off before restraint resumed for three weeks for a total of 23 restraint days. The groups consisted of control (CON) with no restraint other than food and water restriction yoked to the restrained groups, stress immediate (STR-IMM), which were restrained then fear conditioned soon after the end of the IRS paradigm, and stress given a rest for 6 weeks before fear conditioning commenced (STR-R6). Rats were fear conditioned by pairing a 20 second tone with a footshock, then given extinction training for two days (15 tone only on each day). On the first day of extinction, all groups discriminated well on the first trial, but then as trials progressed, STR-R6 discriminated between tone and context less than did CON. On the second day of extinction, STR- IMM froze more to context in the earlier trials than compared to STR-R6 and CON. As trials progressed STR-IMM and STR-R6 froze more to context than compared to CON. Together, CON discriminated between tone and context better than did STR-IMM and STR-R6. Sucrose preference, novelty suppressed feeding, and elevated plus maze was performed after fear extinction was completed. No statistical differences were observed among groups for sucrose preference or novelty suppressed feeding. For the elevated plus maze, STR-IMM entered the open arms and the sum of both open and closed arms fewer than did STR- R6 and CON. We interpret the findings to suggest that the stress groups displayed increased hypervigilance and anxiety with STR-R6 exhibiting a unique phenotype than that of STR-IMM and CON.
ContributorsShah, Vrishti Bimal (Author) / Conrad, Cheryl (Thesis director) / Newbern, Jason (Committee member) / Judd, Jessica (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
193297-Thumbnail Image.png
Description
Autism spectrum disorder (ASD) is characterized by deficits in flexible cognition and social behavior. The most common atypical brain structure in ASD, the cerebellum, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cognitive- and social-associated brain regions, yet formation and modulation of these pathways are not fully

Autism spectrum disorder (ASD) is characterized by deficits in flexible cognition and social behavior. The most common atypical brain structure in ASD, the cerebellum, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cognitive- and social-associated brain regions, yet formation and modulation of these pathways are not fully understood. Additionally, a CN output mechanism, perineuronal nets (PNNs), structure and function are undefined. PNNs are specialized extracellular matrix structures whose appearance is associated with the end of the critical period of plasticity and have been implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown.To examine the role of CN on cognition, CN activity was increased or decreased in both male and female mice using Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) from postnatal day 21-35. Learning and reversal was analyzed using a pairwise visual discrimination task. Social behavior was assessed using a classic three-chamber assay and analyzed using SLEAP (Social Leap Estimates Animal Poses). A marker of critical periods, perineuronal nets (PNNs), was examined to understand relationships between neural development and behavior. Interestingly, adolescent CN disruption did not alter task acquisition, yet correct choice reversal performance was dependent on DREADD manipulation and sex. CN inhibition improved reversal learning in males (5 days faster to criteria) and CN excitation improved female reversal learning (10 days faster to criteria) compared to controls. Analysis of social behavior revealed male social preference was abolished in CN manipulated groups, whereas females failed to demonstrate a social preference. Interestingly, CN manipulation in females regardless of direction, reduced PNN intensity, whereas in males only CN inhibition reduced PNN intensity. PNN intensity negatively correlated with reversal performance. CN PNN intensity showed no relation to social behavior. These data suggest chronic adolescent CN manipulation may have compensatory changes in PNN structure and CN output to improve reversal learning and PNN function was unrelated to social behavior. This study provides new evidence for CN in non-motor functions and sex-dependent differences in behavior and CN plasticity.
ContributorsLyle, Tristan (Author) / Verpeut, Jessica (Thesis advisor) / Sanabria, Federico (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2024
154368-Thumbnail Image.png
Description
MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses, microRNA-495 (miR-495) was found to target several genes within the Knowledgebase of Addiction-Related Genes (KARG) database and to be highly

MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses, microRNA-495 (miR-495) was found to target several genes within the Knowledgebase of Addiction-Related Genes (KARG) database and to be highly expressed in the nucleus accumbens (NAc), a pivotal brain region involved in reward and motivation. The central hypothesis of this dissertation is that NAc miR-495 regulates drug abuse-related behavior by targeting several addiction-related genes (ARGs). I tested this hypothesis in two ways: 1) by examining the effects of viral-mediated miR-495 overexpression or inhibition in the NAc of rats on cocaine abuse-related behaviors and gene expression, and 2) by examining changes in NAc miR-495 and ARG expression as a result of brief (i.e., 1 day) or prolonged (i.e., 22 days) cocaine self-administration. I found that behavioral measures known to be sensitive to motivation for cocaine were attenuated by NAc miR-495 overexpression, including resistance to extinction of cocaine conditioned place preference (CPP), cocaine self-administration on a high effort progressive ratio schedule of reinforcement, and cocaine-seeking behavior during both extinction and cocaine-primed reinstatement. These effects appeared specific to cocaine, as there was no effect of NAc miR-495 overexpression on a progressive ratio schedule of food reinforcement. In contrast, behavioral measures known to be sensitive to cocaine reward were not altered, including expression of cocaine CPP and cocaine self-administration under a low effort FR5 schedule of reinforcement. Importantly, the effects were accompanied by decreases in NAc ARG expression, consistent with my hypothesis. In further support, I found that NAc miR-495 levels were reduced and ARG levels were increased in rats following prolonged, but not brief, cocaine self-administration experience. Surprisingly, inhibition of NAc miR-495 expression also decreased both cocaine-seeking behavior during extinction and NAc ARG expression, which may reflect compensatory changes or unexplained complexities in miR-495 regulatory effects. Collectively, the findings suggest that NAc miR-495 regulates ARG expression involved in motivation for cocaine. Therefore, using microRNAs as tools to target several ARGs simultaneously may be useful for future development of addiction therapeutics.
ContributorsBastle, Ryan (Author) / Neisewander, Janet (Thesis advisor) / Newbern, Jason (Committee member) / Nikulina, Ella (Committee member) / Perrone-Bizzozero, Nora (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2016