Matching Items (5)
Filtering by

Clear all filters

157365-Thumbnail Image.png
Description
UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track

UVLabel was created to enable radio astronomers to view and annotate their own data such that they could then expand their future research paths. It simplifies their data rendering process by providing a simple user interface to better access sections of their data. Furthermore, it provides an interface to track trends in their data through a labelling feature.

The tool was developed following the incremental development process in order to quickly create a functional and testable tool. The incremental process also allowed for feedback from radio astronomers to help guide the project's development.

UVLabel provides both a functional product, and a modifiable and scalable code base for radio astronomer developers. This enables astronomers studying various astronomical interferometric data labelling capabilities. The tool can then be used to improve their filtering methods, pursue machine learning solutions, and discover new trends. Finally, UVLabel will be open source to put customization, scalability, and adaptability in the hands of these researchers.
ContributorsLa Place, Cecilia (Author) / Bansal, Ajay (Thesis advisor) / Jacobs, Daniel (Thesis advisor) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2019
135105-Thumbnail Image.png
Description
Academic integrity policies coded specifically for journalism schools or departments are devised for the purpose of fostering a realistic, informative learning environment. Plagiarism and fabrication are two of the most egregious errors of judgment a journalist can commit, and journalism schools and departments address these errors through their academic integrity

Academic integrity policies coded specifically for journalism schools or departments are devised for the purpose of fostering a realistic, informative learning environment. Plagiarism and fabrication are two of the most egregious errors of judgment a journalist can commit, and journalism schools and departments address these errors through their academic integrity policies. Some schools take a zero-tolerance approach, often expelling the student after the first or second violation, while other schools take a tolerant approach, in which a student is permitted at least three violations before suspension is considered. In a time where plagiarizing and fabricating stories has never been easier to commit and never easier to catch, students must be prepared to understand plagiarism and fabrication with multimedia elements, such as video, audio, and photos. In this project, journalism academic integrity codes were gathered from across the U.S. and designated to a zero-tolerance, semi-tolerant or tolerant category the researcher designed in order to determine what is preparing students most for the real journalism world, and to suggest how some policies could improve themselves.
ContributorsRoney, Claire Marie (Author) / McGuire, Tim (Thesis director) / Russomanno, Joseph (Committee member) / W. P. Carey School of Business (Contributor) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description

In this thesis, several different methods for detecting and removing satellite streaks from astronomic images were evaluated and compared with a new machine learning based approach. Simulated data was generated with a variety of conditions, and the performance of each method was evaluated both quantitatively, using Mean Absolute Error (MAE)

In this thesis, several different methods for detecting and removing satellite streaks from astronomic images were evaluated and compared with a new machine learning based approach. Simulated data was generated with a variety of conditions, and the performance of each method was evaluated both quantitatively, using Mean Absolute Error (MAE) against a ground truth detection mask and processing throughput of the method, as well as qualitatively, examining the situations in which each model performs well and poorly. Detection methods from existing systems Pyradon and ASTRiDE were implemented and tested. A machine learning (ML) image segmentation model was trained on simulated data and used to detect streaks in test data. The ML model performed favorably relative to the traditional methods tested, and demonstrated superior robustness in general. However, the model also exhibited some unpredictable behavior in certain scenarios which should be considered. This demonstrated that machine learning is a viable tool for the detection of satellite streaks in astronomic images, however special care must be taken to prevent and to minimize the effects of unpredictable behavior in such models.

ContributorsJeffries, Charles (Author) / Acuna, Ruben (Thesis director) / Martin, Thomas (Committee member) / Bansal, Ajay (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor)
Created2023-05
157904-Thumbnail Image.png
Description
TolTEC is a three-color millimeter wavelength camera currently being developed for the Large Millimeter Telescope (LMT) in Mexico. Synthesizing data from previous astronomy cameras as well as knowledge of atmospheric physics, I have developed a simulation of the data collection of TolTEC on the LMT. The simulation was built off

TolTEC is a three-color millimeter wavelength camera currently being developed for the Large Millimeter Telescope (LMT) in Mexico. Synthesizing data from previous astronomy cameras as well as knowledge of atmospheric physics, I have developed a simulation of the data collection of TolTEC on the LMT. The simulation was built off smaller sub-projects that informed the development with an understanding of the detector array, the time streams for astronomical mapping, and the science behind Lumped Element Kinetic Inductance Detectors (LEKIDs). Additionally, key aspects of software development processes were integrated into the scientific development process to streamline collaboration across multiple universities and plan for integration on the servers at LMT. The work I have done benefits the data reduction pipeline team by enabling them to efficiently develop their software and test it on simulated data.
ContributorsHorton, Paul (Author) / Mauskopf, Philip (Thesis advisor) / Bansal, Ajay (Thesis advisor) / Sandy, Douglas (Committee member) / Arizona State University (Publisher)
Created2019
158416-Thumbnail Image.png
Description
Plagiarism is a huge problem in a learning environment. In programming classes especially, plagiarism can be hard to detect as source codes' appearance can be easily modified without changing the intent through simple formatting changes or refactoring. There are a number of plagiarism detection tools that attempt to encode knowledge

Plagiarism is a huge problem in a learning environment. In programming classes especially, plagiarism can be hard to detect as source codes' appearance can be easily modified without changing the intent through simple formatting changes or refactoring. There are a number of plagiarism detection tools that attempt to encode knowledge about the programming languages they support in order to better detect obscured duplicates. Many such tools do not support a large number of languages because doing so requires too much code and therefore too much maintenance. It is also difficult to add support for new languages because each language is vastly different syntactically. Tools that are more extensible often do so by reducing the features of a language that are encoded and end up closer to text comparison tools than structurally-aware program analysis tools.

Kitsune attempts to remedy these issues by tying itself to Antlr, a pre-existing language recognition tool with over 200 currently supported languages. In addition, it provides an interface through which generic manipulations can be applied to the parse tree generated by Antlr. As Kitsune relies on language-agnostic structure modifications, it can be adapted with minimal effort to provide plagiarism detection for new languages. Kitsune has been evaluated for 10 of the languages in the Antlr grammar repository with success and could easily be extended to support all of the grammars currently developed by Antlr or future grammars which are developed as new languages are written.
ContributorsMonroe, Zachary Lynn (Author) / Bansal, Ajay (Thesis advisor) / Lindquist, Timothy (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2020