Matching Items (28)
Filtering by

Clear all filters

Description
As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher

As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.
ContributorsHan, Dongran (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Ros, Anexandra (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2012
152470-Thumbnail Image.png
Description
DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the

DNA is a unique, highly programmable and addressable biomolecule. Due to its reliable and predictable base recognition behavior, uniform structural properties, and extraordinary stability, DNA molecules are desirable substrates for biological computation and nanotechnology. The field of DNA computation has gained considerable attention due to the possibility of exploiting the massive parallelism that is inherent in natural systems to solve computational problems. This dissertation focuses on building novel types of computational DNA systems based on both DNA reaction networks and DNA nanotechnology. A series of related research projects are presented here. First, a novel, three-input majority logic gate based on DNA strand displacement reactions was constructed. Here, the three inputs in the majority gate have equal priority, and the output will be true if any two of the inputs are true. We subsequently designed and realized a complex, 5-input majority logic gate. By controlling two of the five inputs, the complex gate is capable of realizing every combination of OR and AND gates of the other 3 inputs. Next, we constructed a half adder, which is a basic arithmetic unit, from DNA strand operated XOR and AND gates. The aim of these two projects was to develop novel types of DNA logic gates to enrich the DNA computation toolbox, and to examine plausible ways to implement large scale DNA logic circuits. The third project utilized a two dimensional DNA origami frame shaped structure with a hollow interior where DNA hybridization seeds were selectively positioned to control the assembly of small DNA tile building blocks. The small DNA tiles were directed to fill the hollow interior of the DNA origami frame, guided through sticky end interactions at prescribed positions. This research shed light on the fundamental behavior of DNA based self-assembling systems, and provided the information necessary to build programmed nanodisplays based on the self-assembly of DNA.
ContributorsLi, Wei (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152821-Thumbnail Image.png
Description
Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2 to 20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize

Colloidal quantum dots (QDs) or semiconductor nanocrystals are often used to describe 2 to 20 nm solution processed nanoparticles of various semiconductor materials that display quantum confinement effects. Compared to traditional fluorescent organic dyes, QDs provide many advantages. For biological applications it is necessary to develop reliable methods to functionalize QDs with hydrophilic biomolecules so that they may maintain their stability and functionality in physiological conditions. DNA, a molecule that encodes genetic information, is arguably the smartest molecule that nature has ever produced and one of the most explored bio-macromolecules. DNA directed self-assembly can potentially organize QDs that are functionalized with DNA with nanometer precision, and the resulting arrangements may facilitate the display of novel optical properties. The goal of this dissertation was to achieve a robust reliable yet simple strategy to link DNA to QDs so that they can be used for DNA directed self assembly by which we can engineer their optical properties. Presented here is a series of studies to achieve this goal. First we demonstrate the aqueous synthesis of colloidal nanocrystal heterostructures consisting of the CdTe core encapsulated by CdS/ZnS or CdSe/ZnS shells using glutathione (GSH), a tripeptide, as the capping ligand. We next employed this shell synthesis strategy to conjugate PS-PO chimeric DNA to QDs at the time of shell synthesis. We synthesized a library of DNA linked QDs emitting from UV to near IR that are very stable in high salt concentrations. These DNA functionalized QDs were further site-specifically organized on DNA origami in desired patterns directed by DNA self-assembly. We further extended our capability to functionalize DNA to real IR emitting CdxPb1-xTe alloyed QDs, and demonstrated their stability by self-assembling them on DNA origami. The photo-physical properties of the QDs were further engineered by attaching a QD and a gold nanoparticle in controlled distances on the same DNA origami, which revealed a much longer range quenching effect than usual Forster Resonance Energy Transfer. We are currently engaged in enhancing photoluminescence intensity of the QDs by bringing them in the plasmonic hot spots generated by cluster of larger plasmonic nanoparticles.
ContributorsSamanta, Anirban (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Buttry, Daniel (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
152699-Thumbnail Image.png
Description
DNA nanotechnology is one of the most flourishing interdisciplinary research fields. Through the features of programmability and predictability, DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales, and more importantly, they can be used as scaffolds for organizing

DNA nanotechnology is one of the most flourishing interdisciplinary research fields. Through the features of programmability and predictability, DNA nanostructures can be designed to self-assemble into a variety of periodic or aperiodic patterns of different shapes and length scales, and more importantly, they can be used as scaffolds for organizing other nanoparticles, proteins and chemical groups. By leveraging these molecules, DNA nanostructures can be used to direct the organization of complex bio-inspired materials that may serve as smart drug delivery systems and in vitro or in vivo bio-molecular computing and diagnostic devices. In this dissertation I describe a systematic study of the thermodynamic properties of complex DNA nanostructures, including 2D and 3D DNA origami, in order to understand their assembly, stability and functionality and inform future design endeavors. It is conceivable that a more thorough understanding of DNA self-assembly can be used to guide the structural design process and optimize the conditions for assembly, manipulation, and functionalization, thus benefiting both upstream design and downstream applications. As a biocompatible nanoscale motif, the successful integration, stabilization and separation of DNA nanostructures from cells/cell lysate suggests its potential to serve as a diagnostic platform at the cellular level. Here, DNA origami was used to capture and identify multiple T cell receptor mRNA species from single cells within a mixed cell population. This demonstrates the potential of DNA nanostructure as an ideal nano scale tool for biological applications.
ContributorsWei, Xixi (Author) / Liu, Yan (Thesis advisor) / Yan, Hao (Thesis advisor) / Chen, Julian (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
153019-Thumbnail Image.png
Description
Scientists around the world have been striving to develop artificial light-harvesting antenna model systems for energy and other light-driven biochemical applications. Among the various approaches to achieve this goal, one of the most promising is the assembly of structurally well-defined artificial light-harvesting antennas based on the principles of structural DNA

Scientists around the world have been striving to develop artificial light-harvesting antenna model systems for energy and other light-driven biochemical applications. Among the various approaches to achieve this goal, one of the most promising is the assembly of structurally well-defined artificial light-harvesting antennas based on the principles of structural DNA nanotechnology. DNA has recently emerged as an extremely efficient material to organize molecules such as fluorophores and proteins on the nanoscale. It is desirable to develop a hybrid smart material by combining artificial antenna systems based on DNA with natural reaction center components, so that the material can be engineered to convert light energy to chemical energy via formation of a charge-separated state.

Presented here are a series of studies toward this goal. First, self-assembled seven-helix DNA bundles (7HB) with cyclic arrays of three distinct chromophores were developed. The spectral properties and energy transfer mechanisms in the artificial light-harvesting antenna were studied extensively using steady-state and time-resolved methods. Next, engineered cysteine residues in the reaction center of the purple photosynthetic bacterium Rhodobacter sphaeroides were each covalently conjugated to fluorophores in order to explore the spectral requirements for energy transfer between an artificial light harvesting system and the reaction center. Finally, a structurally well-defined and spectrally tunable artificial light-harvesting system was constructed, where multiple organic dyes were conjugated to 3-arm DNA nanostructure. A reaction center protein isolated from the purple photosynthetic bacterium Rhodobacter sphaeroides was linked to one end of the 3-arm junction to serve as the final acceptor, which converts the photonic energy absorbed by the chromophores into chemical energy by charge separation. This type of model system is required to understand how parameters such as geometry, spectral characteristics of the dyes, and conformational flexibility affect energy transfer, and can be used to inform the development of more complex model light-harvesting systems.
ContributorsDutta, Palash Kanti (Author) / Liu, Yan (Thesis advisor) / Yan, Hao (Thesis advisor) / Chen, Julian (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014
153396-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA) has emerged as an excellent molecular building block for nanoconstruction in addition to its biological role of preserving genetic information. Its unique features such as predictable conformation and programmable intra- and inter-molecular Watson-Crick base pairing interactions make it a remarkable engineering material. A variety of convenient design

Deoxyribonucleic acid (DNA) has emerged as an excellent molecular building block for nanoconstruction in addition to its biological role of preserving genetic information. Its unique features such as predictable conformation and programmable intra- and inter-molecular Watson-Crick base pairing interactions make it a remarkable engineering material. A variety of convenient design rules and reliable assembly methods have been developed to engineer DNA nanostructures. The ability to create designer DNA architectures with accurate spatial control has allowed researchers to explore novel applications in directed material assembly, structural biology, biocatalysis, DNA

computing, nano-robotics, disease diagnosis, and drug delivery.

This dissertation focuses on developing the structural design rules for "static" DNA nano-architectures with increasing complexity. By using a modular self-assembly method, Archimedean tilings were achieved by association of different DNA motifs with designed arm lengths and inter-tile sticky end interactions. By employing DNA origami method, a new set of design rules was created to allow the scaffolds to travel in arbitrary directions in a designed geometry without local symmetry restrictions. Sophisticated wireframe structures of higher-order complexity were designed and constructed successfully. This dissertation also presents the use of "dynamic" DNA nanotechnology to construct DNA origami nanostructures with programmed reconfigurations.
ContributorsZhang, Fei (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Gould, Ian (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2015
136057-Thumbnail Image.png
Description
Photophysical Studies of the DNA Microenvironment and Small Molecule-DNA Interactions
The photophysical properties of ethidium in a variety of organic solvents, as well as several dsDNAs, were measured. We report that the fluorescence quantum yield of intercalated ethidium is .30(.03), which falls between previous stated measurements of .14 and .60.

Photophysical Studies of the DNA Microenvironment and Small Molecule-DNA Interactions
The photophysical properties of ethidium in a variety of organic solvents, as well as several dsDNAs, were measured. We report that the fluorescence quantum yield of intercalated ethidium is .30(.03), which falls between previous stated measurements of .14 and .60. We believe this to be the most accurately measured fluorescence quantum yield to date, as verified by Strickler-Berg analyses, which exhibit excellent agreement with experimental fluorescence lifetimes. A marked hypochromism upon binding to DNA is noted due to interactions of the dye’s and nucleobases’ respective π-stacks. This more than counteracts the expected increase in transition dipole due to increased conjugation caused by twisting of the phenyl moiety upon intercalation.
The reduced volume cylinder model was tested by the quenching of the fluorescence of an intercalator (ethidium bromide) by a groove binder (methyl viologen). We report that the model is not accurate over a relevant range of DNA concentrations.
ContributorsEngelhart, Aaron (Author) / Gould, Ian (Thesis director) / Francisco, Wilson (Committee member) / Bednar, Valerie (Committee member) / Barrett, The Honors College (Contributor)
Created2005-05
134602-Thumbnail Image.png
Description
This project created a tool for visualizing constructive solid geometry (CSG) using an HTC Vive virtual reality
headset. This tool provides functionality for surface triangulation
of a variety of three-dimensional primitive solids. Then with those
solids it can perform the core CSG operations—intersection,
union and complement—to create more complex objects. This
tool also parses in

This project created a tool for visualizing constructive solid geometry (CSG) using an HTC Vive virtual reality
headset. This tool provides functionality for surface triangulation
of a variety of three-dimensional primitive solids. Then with those
solids it can perform the core CSG operations—intersection,
union and complement—to create more complex objects. This
tool also parses in Silo data files to allow the visualization
of scientific models like the Annular Core Research Reactor.
This project is useful for both education and visualization. This
project will be used by scientists to visualize and understand
their simulation results, and used as a museum exhibit to engage
the next generation of scientists in computer modeling.
ContributorsJones, Derek Matthew (Author) / Kashiwagi, Dean (Thesis director) / O'Brien, Matthew (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132921-Thumbnail Image.png
Description
Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of

Virtual reality gives users the opportunity to immerse themselves in an accurately
simulated computer-generated environment. These environments are accurately simulated in that they provide the appearance of- and allow users to interact with- the simulated environment. Using head-mounted displays, controllers, and auditory feedback, virtual reality provides a convincing simulation of interactable virtual worlds (Wikipedia, “Virtual reality”). The many worlds of virtual reality are often expansive, colorful, and detailed. However, there is one great flaw among them- an emotion evoked in many users through the exploration of such worlds-loneliness.
The content in these worlds is impressive, immersive, and entertaining. Without other people to share in these experiences, however, one can find themselves lonely. Users discover a feeling that no matter how many objects and colors surround them in countless virtual worlds, every world feels empty. As humans are social beings by nature, they feel lost without a sense of human connection and human interaction. Multiplayer experiences offer this missing element into the immersion of virtual reality worlds. Multiplayer offers users the opportunity to interact with other live people in a virtual simulation, which creates lasting memories and deeper, more meaningful immersion.
ContributorsJorgensen, Nicholas Keith (Co-author) / Jorgensen, Caitlin Nicole (Co-author) / Selgrad, Justin (Thesis director) / Ehgner, Arnaud (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134100-Thumbnail Image.png
Description
Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to

Can a skill taught in a virtual environment be utilized in the physical world? This idea is explored by creating a Virtual Reality game for the HTC Vive to teach users how to play the drums. The game focuses on developing the user's muscle memory, improving the user's ability to play music as they hear it in their head, and refining the user's sense of rhythm. Several different features were included to achieve this such as a score, different levels, a demo feature, and a metronome. The game was tested for its ability to teach and for its overall enjoyability by using a small sample group. Most participants of the sample group noted that they felt as if their sense of rhythm and drumming skill level would improve by playing the game. Through the findings of this project, it can be concluded that while it should not be considered as a complete replacement for traditional instruction, a virtual environment can be successfully used as a learning aid and practicing tool.
ContributorsDinapoli, Allison (Co-author) / Tuznik, Richard (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12