Matching Items (22)
Filtering by

Clear all filters

148142-Thumbnail Image.png
Description

HackerHero is an educational game designed to teach children, especially those from marginalized backgrounds, computation thinking skills needed for STEAM fields. It also teaches children about social injustice. This project was focused on creating an audio visualization for an AI character within the HackerHero game. The audio visualization consisted of

HackerHero is an educational game designed to teach children, especially those from marginalized backgrounds, computation thinking skills needed for STEAM fields. It also teaches children about social injustice. This project was focused on creating an audio visualization for an AI character within the HackerHero game. The audio visualization consisted of a static silhouette of a face and a wave-like form to represent the mouth. Audio content analysis was performed on audio sampled from the character’s voice lines. Pitch and amplitude derived from the analysis was used to animate the character’s visual features such as it’s brightness, color, and mouth movement. The mouth’s movement and color was manipulated with the audio’s pitch. The lights of Wave were controlled by the amplitude of the audio. Design considerations were made to accommodate those with visual disabilities such as color blindness and epilepsy. Overall the final audio visualization satisfied the project sponsor and built upon existing audio visualization work. User feedback will be a necessity for improving the audio visualization in the future.

ContributorsNguyen, Joshep D (Author) / Chavez-Echaegaray, Helen (Thesis director) / Waggoner, Trae (Committee member) / Department of Psychology (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136516-Thumbnail Image.png
Description
Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot

Bots tamper with social media networks by artificially inflating the popularity of certain topics. In this paper, we define what a bot is, we detail different motivations for bots, we describe previous work in bot detection and observation, and then we perform bot detection of our own. For our bot detection, we are interested in bots on Twitter that tweet Arabic extremist-like phrases. A testing dataset is collected using the honeypot method, and five different heuristics are measured for their effectiveness in detecting bots. The model underperformed, but we have laid the ground-work for a vastly untapped focus on bot detection: extremist ideal diffusion through bots.
ContributorsKarlsrud, Mark C. (Author) / Liu, Huan (Thesis director) / Morstatter, Fred (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
136785-Thumbnail Image.png
Description
This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of a chair to provide vibrotactile stimulation in the context of a dyadic (one-on-one) interaction across a table. This work explores the design of spatiotemporal vibration patterns that can be used to convey the basic building blocks of facial movements according to the Facial Action Unit Coding System. A behavioral study was conducted to explore the factors that influence the naturalness of conveying affect using vibrotactile cues.
ContributorsBala, Shantanu (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
137004-Thumbnail Image.png
Description
Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement

Brain-computer interface technology establishes communication between the brain and a computer, allowing users to control devices, machines, or virtual objects using their thoughts. This study investigates optimal conditions to facilitate learning to operate this interface. It compares two biofeedback methods, which dictate the relationship between brain activity and the movement of a virtual ball in a target-hitting task. Preliminary results indicate that a method in which the position of the virtual object directly relates to the amplitude of brain signals is most conducive to success. In addition, this research explores learning in the context of neural signals during training with a BCI task. Specifically, it investigates whether subjects can adapt to parameters of the interface without guidance. This experiment prompts subjects to modulate brain signals spectrally, spatially, and temporally, as well differentially to discriminate between two different targets. However, subjects are not given knowledge regarding these desired changes, nor are they given instruction on how to move the virtual ball. Preliminary analysis of signal trends suggests that some successful participants are able to adapt brain wave activity in certain pre-specified locations and frequency bands over time in order to achieve control. Future studies will further explore these phenomena, and future BCI projects will be advised by these methods, which will give insight into the creation of more intuitive and reliable BCI technology.
ContributorsLancaster, Jenessa Mae (Co-author) / Appavu, Brian (Co-author) / Wahnoun, Remy (Co-author, Committee member) / Helms Tillery, Stephen (Thesis director) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
148244-Thumbnail Image.png
Description

In this experiment, a haptic glove with vibratory motors on the fingertips was tested against the standard HTC Vive controller to see if the additional vibrations provided by the glove increased immersion in common gaming scenarios where haptic feedback is provided. Specifically, two scenarios were developed: an explosion scene containing

In this experiment, a haptic glove with vibratory motors on the fingertips was tested against the standard HTC Vive controller to see if the additional vibrations provided by the glove increased immersion in common gaming scenarios where haptic feedback is provided. Specifically, two scenarios were developed: an explosion scene containing a small and large explosion and a box interaction scene that allowed the participants to touch the box virtually with their hand. At the start of this project, it was hypothesized that the haptic glove would have a significant positive impact in at least one of these scenarios. Nine participants took place in the study and immersion was measured through a post-experiment questionnaire. Statistical analysis on the results showed that the haptic glove did have a significant impact on immersion in the box interaction scene, but not in the explosion scene. In the end, I conclude that since this haptic glove does not significantly increase immersion across all scenarios when compared to the standard Vive controller, it should not be used at a replacement in its current state.

ContributorsGriffieth, Alan P (Author) / McDaniel, Troy (Thesis director) / Selgrad, Justin (Committee member) / Computing and Informatics Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Economics Program in CLAS (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148262-Thumbnail Image.png
Description

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together.

This thesis is based on bringing together three different components: non-Euclidean geometric worlds, virtual reality, and environmental puzzles in video games. While all three exist in their own right in the world of video games, as well as combined in pairs, there are virtually no examples of all three together. Non-Euclidean environmental puzzle games have existed for around 10 years in various forms, short environmental puzzle games in virtual reality have come into existence in around the past five years, and non-Euclidean virtual reality exists mainly as non-video game short demos from the past few years. This project seeks to be able to bring these components together to create a proof of concept for how a game like this should function, particularly the integration of non-Euclidean virtual reality in the context of a video game. To do this, a Unity package which uses a custom system for creating worlds in a non-Euclidean way rather than Unity’s built-in components such as for transforms, collisions, and rendering was used. This was used in conjunction with the SteamVR implementation with Unity to create a cohesive and immersive player experience.

ContributorsVerhagen, Daniel William (Author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131208-Thumbnail Image.png
Description
In this project, I investigated the impact of virtual reality on memory retention. The investigative approach to see the impact of virtual reality on memory retention, I utilized the memorization technique called the memory palace in a virtual reality environment. For the experiment, due to Covid-19, I was forced to

In this project, I investigated the impact of virtual reality on memory retention. The investigative approach to see the impact of virtual reality on memory retention, I utilized the memorization technique called the memory palace in a virtual reality environment. For the experiment, due to Covid-19, I was forced to be the only subject. To get effective data, I tested myself within randomly generated environments with a completely unique set of objects, both outside of a virtual reality environment and within one. First I conducted a set of 10 tests on myself by going through a virtual environment on my laptop and recalling as many objects I could within that environment. I recorded the accuracy of my own recollection as well as how long it took me to get through the data. Next I conducted a set of 10 tests on myself by going through the same virtual environment, but this time with an immersive virtual reality(VR) headset and a completely new set of objects. At the start of the project it was hypothesized that virtual reality would result in a higher memory retention rate versus simply going through the environment in a non-immersive environment. In the end, the results, albeit with a low test rate, leaned more toward showing the hypothesis to be true rather than not.
ContributorsDu, Michael Shan (Author) / Kobayashi, Yoshihiro (Thesis director) / McDaniel, Troy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132002-Thumbnail Image.png
Description
Virtual reality (VR) educational games are growing in demand, partly because of evidence found of the benefit of using embodied gestures in educational VR games. Little research has investigated how presence, which is the subjective experience of existing in a virtual world, impacts player learning gains when playing an embodied

Virtual reality (VR) educational games are growing in demand, partly because of evidence found of the benefit of using embodied gestures in educational VR games. Little research has investigated how presence, which is the subjective experience of existing in a virtual world, impacts player learning gains when playing an embodied STEM VR games. The current study investigates how presence impacts learning gains in four conditions. This study evaluated 122 participants’ subjective experiences of presence via an experimenter-designed Presence Scale after playing an educational STEM VR game. ANOVAs were conducted to evaluate differences in learning gains by condition and to also ascertain how presence was affected by cognitive load. Results revealed that presence did not impact learning gains, although high embodiment and high immersion significantly predicted presence. These findings contribute to understanding the effects of embodiment on VR educational games, and how to design for VR user-ability.
ContributorsKalina, Elena Aleksandra (Author) / Johnson-Glenberg, Mina C. (Thesis director) / Presson, Clark (Committee member) / McClure, Sammuel (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131525-Thumbnail Image.png
Description
The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark

The original version of Helix, the one I pitched when first deciding to make a video game
for my thesis, is an action-platformer, with the intent of metroidvania-style progression
and an interconnected world map.

The current version of Helix is a turn based role-playing game, with the intent of roguelike
gameplay and a dark fantasy theme. We will first be exploring the challenges that came
with programming my own game - not quite from scratch, but also without a prebuilt
engine - then transition into game design and how Helix has evolved from its original form
to what we see today.
ContributorsDiscipulo, Isaiah K (Author) / Meuth, Ryan (Thesis director) / Kobayashi, Yoshihiro (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133010-Thumbnail Image.png
Description
SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice Service technologies to provide a new and improved way to

SmartAid aims to target a small, yet relevant issue in a cost effective, easily replicable, and innovative manner. This paper outlines how to replicate the design and building process to create an intelligent first aid kit. SmartAid utilizes Alexa Voice Service technologies to provide a new and improved way to teach users about the different types of first aid kit items and how to treat minor injuries, step by step. Using Alexa and RaspberryPi, SmartAid was designed as an added attachment to first aid kits. Alexa Services were installed into a RaspberryPi to create a custom Amazon device, and from there, using the Alexa Interaction Model and the Lambda function services, SmartAid was developed. After the designing and coding of the application, a user guide was created to provide users with information on what items are included in the first aid kit, what types of injuries can be treated through first aid, and how to use SmartAid. The
application was tested for its usability and practicality by a small sample of students. Users provided suggestions on how to make the application more versatile and functional, and confirmed that the application made first aid easier and was something that they could see themselves using. While this application is not aimed to replace the current physical guide solution completely, the findings of this project show that SmartAid has potential to stand in as an improved, easy to use, and convenient alternative for first aid guidance.
ContributorsHasan, Bushra Anwara (Author) / Kobayashi, Yoshihiro (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05