Matching Items (10)
Filtering by

Clear all filters

153408-Thumbnail Image.png
Description
Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability

Vaccination remains one of the most effective means for preventing infectious diseases. During viral infection, activated CD8 T cells differentiate into cytotoxic effector cells that directly kill infected cells and produce anti-viral cytokines. Further T cell differentiation results in a population of memory CD8 T cells that have the ability to self-renew and rapidly proliferate into effector cells during secondary infections. However during persistent viral infection, T cell differentiation is disrupted due to sustained antigen stimulation resulting in a loss of T cell effector function. Despite the development of vaccines for a wide range of viral diseases, efficacious vaccines for persistent viral infections have been challenging to design. Immunization against virus T cell epitopes has been proposed as an alternative vaccination strategy for persistent viral infections, such as HIV. However, vaccines that selectively engage T cell responses can result in inappropriate immune responses that increase, rather than prevent, disease. Quantitative models of virus infection and immune response were used to investigate how virus and immune system variables influence pathogenic versus protective T cell responses generated during persistent viral infection. It was determined that an intermediate precursor frequency of virus-specific memory CD8 T cells prior to LCMV infection resulted in maximum T cell mediated pathology. Increased pathology was independent of antigen sensitivity or the diversity of TCR in the CD8 T cell response, but was dependent on CD8 T cell production of TNF and the magnitude of initial virus exposure. The threshold for exhaustion of responding CD8 T cells ultimately influences the precursor frequency that causes enhanced disease.In addition, viral infection can occur in the context of co-infection by heterologous pathogens that modulate immune responses and/or disease. Co-infection of two unrelated viruses in their natural host, Ectromelia virus (ECTV) and Lymphocytic Choriomeningitis virus (LCMV) infection in mice, were studied. ECTV infection can be a lethal infection in mice due in part to the blockade of antiviral cytokines, including Type I Interferons (IFN-I). It was determined that ECTV/LCMV co-infection results in decreased ECTV viral load and amelioration of ECTV-induced disease, presumably due to IFN-I induction by LCMV. However, immune responses to LCMV in ECTV co-infected mice were also lower compared to mice infected with LCMV alone and biased toward effector-memory cell generation. Thus, providing evidence for bi-directional effects of viral co-infection that modulate disease and immunity. Together the results suggest heterogeneity in T cell responses during vaccination with viral vectors may be in part due to heterologous virus infection or vaccine usage and that TNF-blockade may be useful for minimizing pathology while maintaining protection during virus infection. Lastly, quantitative mathematical models of virus and T cell immunity can be useful to generate predictions regarding which molecular and cellular pathways mediate T cell protection versus pathology.
ContributorsMcAfee, Megan (Author) / Blattman, Joseph N (Thesis advisor) / Anderson, Karen (Committee member) / Jacobs, Bertram (Committee member) / Hogue, Brenda (Committee member) / Arizona State University (Publisher)
Created2015
153363-Thumbnail Image.png
Description
Osteosarcoma is the most common bone cancer in children and adolescents. Patients with metastatic osteosarcoma are typically refractory to treatment. Numerous lines of evidence suggest that cytotoxic T-lymphocytes (CTL) limit the development of metastatic osteosarcoma. I have investigated the role of Programmed Death Receptor-1 (PD-1) in limiting the efficacy of

Osteosarcoma is the most common bone cancer in children and adolescents. Patients with metastatic osteosarcoma are typically refractory to treatment. Numerous lines of evidence suggest that cytotoxic T-lymphocytes (CTL) limit the development of metastatic osteosarcoma. I have investigated the role of Programmed Death Receptor-1 (PD-1) in limiting the efficacy of immune mediated control of metastatic osteosarcoma. I show that human metastatic, but not primary, osteosarcoma tumors express the ligand for PD-1 (PD-L1) and that tumor infiltrating CTL express PD-1, suggesting this pathway may limit CTL control of metastatic osteosarcoma in patients. PD-L1 is also expressed on the K7M2 osteosarcoma tumor cell line that establishes metastases in mice, and PD-1 is expressed on tumor infiltrating CTL during disease progression. Blockade of PD-1/PD-L1 interactions dramatically improves the function of osteosarcoma-reactive CTL in vitro and in vivo, and results in decreased tumor burden and increased survival in the K7M2 mouse model of metastatic osteosarcoma. My results suggest that blockade of PD-1/PD-L1 interactions in patients with metastatic osteosarcoma should be pursued as a therapeutic strategy. However, PD-1/PD-L1 blockade treated mice still succumb to disease due to selection of PD-L1 mAb resistant tumor cells via up-regulation of other co-inhibitory T cell receptors. Combinational α-CTLA-4 and α-PD-L1 blockade treated mice were able to completely eradicate metastatic osteosarcoma, and generate immunity to disease. These results suggest that blockade of PD-1/PD-L1 interactions in patients with metastatic osteosarcoma, although improves survival, may lead to tumor resistance, requiring combinational immunotherapies to combat and eradicate disease.
ContributorsLussier, Danielle (Author) / Blattman, Joseph N. (Thesis advisor) / Anderson, Karen (Committee member) / Goldstein, Elliott (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2015
Description
Studies have demonstrated that viruses such as human immunodeficiency virus [HIV], M13 bacteriophage, and murine cytomegalovirus [MCMV] have been effectively inactivated by exposure to ultra short-pulsed lasers (6,7,10,11,14,15,17). Ultra short pulse laser shows promise as a new method for non-invasive antiviral treatments (17). This method can be used to prevent

Studies have demonstrated that viruses such as human immunodeficiency virus [HIV], M13 bacteriophage, and murine cytomegalovirus [MCMV] have been effectively inactivated by exposure to ultra short-pulsed lasers (6,7,10,11,14,15,17). Ultra short pulse laser shows promise as a new method for non-invasive antiviral treatments (17). This method can be used to prevent problems such as drug resistance that is currently rising in numbers. According to the Center for Disease Control [CDC], there are more than two million people in the United States of America that are infected with antimicrobial-resistant infections and at least 23,000 deaths per year occur as a result (19). In this study, ultra-short pulses, specifically Ti-Sapphire Laser [USP Ti-Sapphire Laser] will be evaluated for viral inactivation. The virus chosen for this study was MS2 bacteriophage, which is a non- enveloped, icosahedral, single-stranded RNA [ssRNA] bacteriophages that infects F+ pilus Escherichia coli (16). It was hypothesized that ultrashort pulses from a Ti-Sapphire laser will inactivate MS2 bacteriophage. Inactivation was measured using plaque-forming units [PFU/mL] as an indicator. It was expected that there would be an increase in inactivation of MS2 bacteriophage with an increase in irradiation duration. The results indicated that MS2 bacteriophage was highly sensitive to irradiation treatments of the USP Ti-Sapphire Laser. The concentration of MS2 bacteriophage decreased by 107 PFU/mL after being treated for various time periods ranging from 5 minutes to 150 minutes. Longer duration of USP Ti- Sapphire Laser treatment inactivated more MS2 Bacteriophage.
ContributorsApablasa, Nayeli Aleysa (Author) / Stout, Valerie (Thesis director) / Jacobs, Bertram (Committee member) / Tsen, Kong-Thong (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
Description
In the years following the HIV epidemic, much has changed in the way of public health, the social epidemic of stigma has remained. It is the assertion of the authors that stigma can be combatted through the propagation of accurate education and exposure to the lasting negative impacts of social

In the years following the HIV epidemic, much has changed in the way of public health, the social epidemic of stigma has remained. It is the assertion of the authors that stigma can be combatted through the propagation of accurate education and exposure to the lasting negative impacts of social stigma on persons living with HIV in the United States at present. Although individuals who are not apart of this community cannot truly understand the impacts of HIV-related stigma on those directly impacted by it, a sense of understanding and compassion may be elicited through the breakdown of social stigma into comprehensible components and the provision of stigma-inspired artwork. In addition to providing a background on the scientific basis of Human immunodeficiency virus and its spread, the authors have elected to utilize public engagement by means of an anonymous survey as well as personal interactions with HIV advocates to synthesize paintings. Responses were collected from approximately 300 survey participants via social media with no demographic information collected. It was the hope of the authors that the lack of identifying questions may prompt participants to answer freely and honestly to improve overall understanding of social perceptions of HIV and its related stigma. These paintings and resources deemed appropriate based on the results of the aforementioned survey are to be displayed on a webpage for easier access and engagement with a broader audience.Moreover, this webpage is intended to be maintained and utilized beyond the timeframe of this Undergraduate Honors Thesis for the intended purpose of promoting stigma-free HIV advocacy and education.
ContributorsRidgley, Nathan Laurence (Co-author) / Luigs, Stephanie (Co-author) / Jacobs, Bertram (Thesis director) / Salamone, Damien (Committee member) / Spencer, Glen (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
149369-Thumbnail Image.png
Description
Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis

Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis and cell stress, and the return to homeostasis during envelope stress. A major player in envelope biogenesis and stress response is the periplasmic protease DegP. Work presented here explores the growth phenotypes of cells lacking degP, including temperature sensitivity and lowered cell viability. Intriguingly, these cells also accumulate novel cytosolic proteins in their envelope not present in wild-type. Association of novel proteins was found to be growth time- and temperature-dependent, and was reversible, suggesting a dynamic nature of the envelope stress response. Two-dimensional gel electrophoresis of envelopes followed by mass spectrometry identified numerous cytoplasmic proteins, including the elongation factor/chaperone TufA, illuminating a novel cytoplasmic response to envelope stress. A suppressor of temperature sensitivity was characterized which corrects the defect caused by the lack of degP. Through random Tn10 insertion analysis, aribitrarily-primed polymerase chain reaction and three-factor cross, the suppressor was identified as a novel duplication-truncation of rpoE, here called rpoE'. rpoE' serves to subtly increase RpoE levels in the cell, resulting in a slight elevation of the SigmaE stress response. It does so without significantly affecting steady-state levels of outer membrane proteins, but rather by increasing proteolysis in the envelope independently of DegP. A multicopy suppressor of temperature sensitivity in strains lacking degP and expressing mutant OmpC proteins, yfgC, was characterized. Bioinformatics suggests that YfgC is a metalloprotease, and mutation of conserved domains resulted in mislocalization of the protein. yfgC-null mutants displayed additive antibiotic sensitivity and growth defects when combined with null mutation in another periplasmic chaperone, surA, suggesting that the two act in separate pathways during envelope biogenesis. Overexpression of YfgC6his altered steady-state levels of mutant OmpC in the envelope, showing a direct relationship between it and a major constituent of the envelope. Curiously, purified YfgC6his showed an increased propensity for crosslinking in mutant, but not in a wild-type, OmpC background.
ContributorsLeiser, Owen Paul (Author) / Misra, Rajeev (Thesis advisor) / Jacobs, Bertram (Committee member) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2010
158428-Thumbnail Image.png
Description
Anoxia tolerance is strongly correlated with tolerance to heat, desiccation, hyperosmotic shock, freezing, and other general stressors, suggesting that anoxia tolerance is broadly related to stress tolerance. Age affects the capacity of many animals to survive anoxia, but the basis to this ontogenic variation is poorly understood. We exposed adult

Anoxia tolerance is strongly correlated with tolerance to heat, desiccation, hyperosmotic shock, freezing, and other general stressors, suggesting that anoxia tolerance is broadly related to stress tolerance. Age affects the capacity of many animals to survive anoxia, but the basis to this ontogenic variation is poorly understood. We exposed adult Drosophila, 1, 3, 5, 7, 9, and 12 days past eclosion, to six hours of anoxia and assessed survival 24-hours post-treatment. Survival of anoxia declined strongly with age (from 80% survival for one-day-old flies to 10% survival for 12 day-old-flies), a surprising result since adult fly senescence in Drosophila is usually observed much later. In anoxia, adenosine triphosphate (ATP) levels declined rapidly (< 30 min) to near-zero levels in both 1 and 12-day old adults; thus the higher anoxia-tolerance of young adults is not due to a better capacity to keep ATP elevated. Relatively few physiological parameters are reported to change over this age range in D. melanogaster, but gut bacterial content increases strongly. As a partial test for a causal link between bacterial load and anoxia tolerance, we replaced food daily, every third day, or every sixth day, and assayed survival of six hours of anoxia and bacterial load at 12 days of age. Anoxia tolerance for 12-day old flies was improved by more food changes and was strongly and negatively affected by bacterial load. These data suggest that increasing bacterial load may play an important role in the age-related decline of anoxia tolerance in Drosophila.
ContributorsSargent, James (Author) / Harrison, Jon F. (Thesis advisor) / Haydel, Shelly (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2020
158492-Thumbnail Image.png
Description
Adoptive transfer of T cells engineered to express synthetic antigen-specific T cell receptors (TCRs) has provocative therapeutic applications for treating cancer. However, expressing these synthetic TCRs in a CD4+ T cell line is a challenge. The CD4+ Jurkat T cell line expresses endogenous TCRs that compete for space, accessory proteins,

Adoptive transfer of T cells engineered to express synthetic antigen-specific T cell receptors (TCRs) has provocative therapeutic applications for treating cancer. However, expressing these synthetic TCRs in a CD4+ T cell line is a challenge. The CD4+ Jurkat T cell line expresses endogenous TCRs that compete for space, accessory proteins, and proliferative signaling, and there is the potential for mixed dimer formation between the α and β chains of the endogenous receptor and that of the synthetic cancer-specific TCRs. To prevent hybridization between the receptors and to ensure the binding affinity measured with flow cytometry analysis is between the tetramer and the TCR construct, a CRISPR-Cas9 gene editing pipeline was developed. The guide RNAs (gRNAs) within the complex were designed to target the constant region of the α and β chains, as they are conserved between TCR clonotypes. To minimize further interference and confer cytotoxic capabilities, gRNAs were designed to target the CD4 coreceptor, and the CD8 coreceptor was delivered in a mammalian expression vector. Further, Golden Gate cloning methods were validated in integrating the gRNAs into a CRISPR-compatible mammalian expression vector. These constructs were transfected via electroporation into CD4+ Jurkat T cells to create a CD8+ knockout TCR Jurkat cell line for broadly applicable uses in T cell immunotherapies.
ContributorsHirneise, Gabrielle Rachel (Author) / Anderson, Karen (Thesis advisor) / Mason, Hugh (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2020
132264-Thumbnail Image.png
Description
Brought on by extended survival due to Highly Active Anti-Retroviral Therapy and increased incidence among older adults, the demographic profile of the HIV epidemic has begun to shift towards the aging population. As people living with HIV (PLWH) begin to age and develop multiple comorbidities, their needs are no longer

Brought on by extended survival due to Highly Active Anti-Retroviral Therapy and increased incidence among older adults, the demographic profile of the HIV epidemic has begun to shift towards the aging population. As people living with HIV (PLWH) begin to age and develop multiple comorbidities, their needs are no longer limited to HIV treatment and disease management; they may require aging services similar to those with a negative HIV status. Increased attention has been placed on HIV and aging to assess the unique needs of older PLWH, however, limited research exists on the preparedness of aging services to provide adequate care to this population. This study aims to assess HIV and aging within Maricopa County, where individuals aged 50 years and older account for nearly half the reported HIV/AIDS cases in the county, and 30% of cases in Arizona. Two focus groups – one with older PLWH and another with aging service professionals – were conducted to gather information about existing aging services and the perspectives of older PLWH regarding their growing needs. Older PLWH were found to experience challenges similar to those that have been well-documented in previous studies: most notably, PTSD and other mental health conditions; fear of the future and isolation; HIV status disclosure and stigma; and economics and financial security. An anonymous survey was developed in conjunction with Aunt Rita’s Foundation to evaluate Maricopa County aging services; it was discovered that providers lack experience with HIV and admit deficiencies in their preparation to address the age-related concerns of older PLWH. The results show that the majority of providers were supportive of offering care to older PLWH and expressed interest in improving their preparedness. Future research is necessary to obtain perspectives from additional aging services in Maricopa County and word towards the development of an aging services directory to connect older PLWH to care.
ContributorsLayon, Sarah (Author) / Jacobs, Bertram (Thesis director) / Coon, David (Committee member) / Spencer, Glen (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131656-Thumbnail Image.png
Description
Human Immunodeficiency Virus, or HIV, is a global epidemic, costing over 9.51 million individuals their lives since 2000. There are different modes of transmission of HIV, one such mode being from an HIV positive woman to her child before, during, or after delivery (SIC Curriculum, 2006). Though a global epidemic,

Human Immunodeficiency Virus, or HIV, is a global epidemic, costing over 9.51 million individuals their lives since 2000. There are different modes of transmission of HIV, one such mode being from an HIV positive woman to her child before, during, or after delivery (SIC Curriculum, 2006). Though a global epidemic, not all countries have the same prevalence of mother to child, or MTC, transmission of HIV. In 2016, over 160,000 children under the age of five were newly infected with HIV in sub-Saharan Africa. That is compared to the United States of America, where it is estimated that fewer than 150 new infant HIV infections occur yearly (Glaser Foundation, 2020). Those differences exist despite both countries having access to preventative medication as of 1998.
Additionally, the World Health Organization, or WHO, developed three treatment plans for prevention of MTC transmission of HIV, globally available as of 2010 (WHO, 2010). The goal of the WHO was to globally standardize care of HIV-positive pregnant women and their infants in order to decrease the global prevalence of HIV. The first plan was called Option A, then came Option B, and lastly Option B+. While preventative medication has been available for over twenty years and at least one of these theoretically effective treatment plans has been implemented and is readily available in each country of sub-Saharan Africa, the overall prevalence of MTC transmission of HIV in sub-Saharan Africa has continued to be notably high compared to other countries. Thus, the aim of this thesis is to explore some of the significant obstacles to implementation of the WHO’s treatment plans in sub-Saharan Africa that contribute to that high prevalence. I also suggest possible solutions to those barriers in order to effectively decrease the prevalence of MTC transmission of HIV.
ContributorsJones, Sierra Hope (Author) / Jacobs, Bertram (Thesis director) / Maienschein, Jane (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
190893-Thumbnail Image.png
Description
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of Coronavirus Disease 2019 (COVID-19). Successful vaccination aims to elicit neutralizing antibodies (NAbs) which inhibit viral infection. Traditional NAb quantification methods (neutralization assays) are labor-intensive and expensive, with limited practicality for routine use (e.g. monitoring vaccination response). Thus, a rapid

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of Coronavirus Disease 2019 (COVID-19). Successful vaccination aims to elicit neutralizing antibodies (NAbs) which inhibit viral infection. Traditional NAb quantification methods (neutralization assays) are labor-intensive and expensive, with limited practicality for routine use (e.g. monitoring vaccination response). Thus, a rapid (10-minute) lateral flow assay (LFA) for quantification of SARS-CoV-2 NAbs was developed. Using the NAb LFA, an 18-month longitudinal study assessing monthly NAb titers was conducted in a cohort of over 500 COVID-19 mRNA vaccine recipients. Three NAb response groups were identified: vaccine strong responders (VSRs), moderate responders (VMRs), and poor responders (VPRs). VSRs generated high and durable NAb titers. VMRs initially generated high NAb titers but showed more rapid waning with time post-vaccination. Finally, VPRs rarely generated NAb titers ≥1:160, even after 3rd dose. Although strong humoral responses correlate with vaccine effectiveness, viral-specific CD4+ and CD8+ T cells are critical for long-term protection. Discordant phenotypes of viral-specific CD8+ and CD4+CXCR5+ T follicular helper (cTfh) cells have recently been associated with differential NAb responses. The second portion of this dissertation was to investigate whether/how SARS-CoV-2 T cell responses differ in individuals with impaired NAb titers following mRNA vaccination. Thus, phenotypic and functional characterization of T cell activation across NAb response groups was conducted. It was hypothesized that VPRs would exhibit discordant SARS-CoV-2 T cell activation and altered cTfh phenotypes. Peripheral blood mononuclear cells were isolated from VPRs, VMRs, VSRs, naturally infected, and normal donors. SARS-CoV-2 responsive T cells were characterized using in vitro activation induced marker assays, multicolor flow cytometry, and multiplex cytokine analysis. Further, CXCR5+ cTfh were examined for chemokine receptor expression (CCR6 and CXCR3). Results demonstrated that despite differential NAb responses, activation of SARS-CoV-2 responsive CD4+ and CD8+ T cells was comparable across NAb groups. However, double-positive CD4+CD8+, CD8low, and activated CD4+CXCR5+CCR6-CXCR3+ (Tfh1-like) T cells were expanded in VPRs compared to VMR and VSRs. Interestingly, a unique population of CD8+CXCR5+ T cells was also expanded in VPRs. These novel findings may aid in identification of individuals with impaired or altered immune responses to COVID-19 mRNA vaccination.
ContributorsRoeder, Alexa Jordan (Author) / Lake, Douglas (Thesis advisor) / McFadden, Grant (Committee member) / Borges Florsheim, Esther (Committee member) / Chang, Yung (Committee member) / Rahman, Masmudur (Committee member) / Arizona State University (Publisher)
Created2023