Matching Items (4)
Filtering by

Clear all filters

152417-Thumbnail Image.png
Description
Medical students acquire and enhance their clinical skills using various available techniques and resources. As the health care profession has move towards team-based practice, students and trainees need to practice team-based procedures that involve timely management of clinical tasks and adequate communication with other members of the team. Such team-based

Medical students acquire and enhance their clinical skills using various available techniques and resources. As the health care profession has move towards team-based practice, students and trainees need to practice team-based procedures that involve timely management of clinical tasks and adequate communication with other members of the team. Such team-based procedures include surgical and clinical procedures, some of which are protocol-driven. Cost and time required for individual team-based training sessions, along with other factors, contribute to making the training complex and challenging. A great deal of research has been done on medically-focused collaborative virtual reality (VR)-based training for protocol-driven procedures as a cost-effective as well as time-efficient solution. Most VR-based simulators focus on training of individual personnel. The ones which focus on providing team training provide an interactive simulation for only a few scenarios in a collaborative virtual environment (CVE). These simulators are suited for didactic training for cognitive skills development. The training sessions in the simulators require the physical presence of mentors. The problem with this kind of system is that the mentor must be present at the training location (either physically or virtually) to evaluate the performance of the team (or an individual). Another issue is that there is no efficient methodology that exists to provide feedback to the trainees during the training session itself (formative feedback). Furthermore, they lack the ability to provide training in acquisition or improvement of psychomotor skills for the tasks that require force or touch feedback such as cardiopulmonary resuscitation (CPR). To find a potential solution to overcome some of these concerns, a novel training system was designed and developed that utilizes the integration of sensors into a CVE for time-critical medical procedures. The system allows the participants to simultaneously access the CVE and receive training from geographically diverse locations. The system is also able to provide real-time feedback and is also able to store important data during each training/testing session. Finally, this study also presents a generalizable collaborative team-training system that can be used across various team-based procedures in medical as well as non-medical domains.
ContributorsKhanal, Prabal (Author) / Greenes, Robert (Thesis advisor) / Patel, Vimla (Thesis advisor) / Smith, Marshall (Committee member) / Gupta, Ashish (Committee member) / Kaufman, David (Committee member) / Arizona State University (Publisher)
Created2014
153387-Thumbnail Image.png
Description
A core principle in multiple national quality improvement strategies is the engagement of chronically ill patients in the creation and execution of their treatment plans. Numerous initiatives are underway to use health information technology (HIT) to support patient engagement however the use of HIT and other factors such as health

A core principle in multiple national quality improvement strategies is the engagement of chronically ill patients in the creation and execution of their treatment plans. Numerous initiatives are underway to use health information technology (HIT) to support patient engagement however the use of HIT and other factors such as health literacy may be significant barriers to engagement for older adults. This qualitative descriptive study sought to explore the ways that older adults with multi-morbidities engaged with their plan of care. Forty participants were recruited through multiple case sampling from two ambulatory cardiology practices. Participants were English-speaking, without a dementia-related diagnosis, and between the ages of 65 and 86. The older adults in this study performed many behaviors to engage in the plan of care, including acting in ways to support health, managing health-related information, attending routine visits with their doctors, and participating in treatment planning. A subset of patients engaged in active decision-making because of the point they were at in their chronic disease. At that cross roads, they expressed uncertainly over which road to travel. Two factors influenced the engagement of older adults: a relationship with the provider that met the patient's needs, and the distribution of a Meaningful Use clinical summary at the conclusion of the provider visit. Participants described the ways in which the clinical summary helped and hindered their understanding of the care plan.

Insights gained as a result of this study include an understanding of the discrepancies between what the healthcare system expects of patients and their actual behavior when it comes to the creation of a care plan and the ways in which they take care of their health. Further research should examine the ability of various factors to enhance patient engagement. For example, it may be useful to focus on ways to improve the clinical summary to enhance engagement with the care plan and meet standards for a health literate document. Recommendations for the improvement of the clinical summary are provided. Finally, this study explored potential reasons for the infrequent use of online health information by older adults including the trusting relationship they enjoyed with their cardiologist.
ContributorsJiggins Colorafi, Karen (Author) / Lamb, Gerri (Thesis advisor) / Marek, Karen (Committee member) / Greenes, Robert (Committee member) / Evans, Bronwynne (Committee member) / Arizona State University (Publisher)
Created2015
158416-Thumbnail Image.png
Description
Plagiarism is a huge problem in a learning environment. In programming classes especially, plagiarism can be hard to detect as source codes' appearance can be easily modified without changing the intent through simple formatting changes or refactoring. There are a number of plagiarism detection tools that attempt to encode knowledge

Plagiarism is a huge problem in a learning environment. In programming classes especially, plagiarism can be hard to detect as source codes' appearance can be easily modified without changing the intent through simple formatting changes or refactoring. There are a number of plagiarism detection tools that attempt to encode knowledge about the programming languages they support in order to better detect obscured duplicates. Many such tools do not support a large number of languages because doing so requires too much code and therefore too much maintenance. It is also difficult to add support for new languages because each language is vastly different syntactically. Tools that are more extensible often do so by reducing the features of a language that are encoded and end up closer to text comparison tools than structurally-aware program analysis tools.

Kitsune attempts to remedy these issues by tying itself to Antlr, a pre-existing language recognition tool with over 200 currently supported languages. In addition, it provides an interface through which generic manipulations can be applied to the parse tree generated by Antlr. As Kitsune relies on language-agnostic structure modifications, it can be adapted with minimal effort to provide plagiarism detection for new languages. Kitsune has been evaluated for 10 of the languages in the Antlr grammar repository with success and could easily be extended to support all of the grammars currently developed by Antlr or future grammars which are developed as new languages are written.
ContributorsMonroe, Zachary Lynn (Author) / Bansal, Ajay (Thesis advisor) / Lindquist, Timothy (Committee member) / Acuna, Ruben (Committee member) / Arizona State University (Publisher)
Created2020
151499-Thumbnail Image.png
Description
Parkinson's disease, the most prevalent movement disorder of the central nervous system, is a chronic condition that affects more than 1000,000 U.S. residents and about 3% of the population over the age of 65. The characteristic symptoms include tremors, bradykinesia, rigidity and impaired postural stability. Current therapy based on augmentation

Parkinson's disease, the most prevalent movement disorder of the central nervous system, is a chronic condition that affects more than 1000,000 U.S. residents and about 3% of the population over the age of 65. The characteristic symptoms include tremors, bradykinesia, rigidity and impaired postural stability. Current therapy based on augmentation or replacement of dopamine is designed to improve patients' motor performance but often leads to levodopa-induced complications, such as dyskinesia and motor fluctuation. With the disease progress, clinicians must closely monitor patients' progress in order to identify any complications or decline in motor function as soon as possible in PD management. Unfortunately, current clinical assessment for Parkinson's is subjective and mostly influenced by brief observations during patient visits. Thus improvement or decline in patients' motor function in between visits is extremely difficult to assess. This may hamper clinicians while making informed decisions about the course of therapy for Parkinson's patients and could negatively impact clinical care. In this study we explored new approaches for PD assessment that aim to provide home-based PD assessment and monitoring. By extending the disease assessment to home, the healthcare burden on patients and their family can be reduced, and the disease progress can be more closely monitored by physicians. To achieve these aims, two novel approaches have been designed, developed and validated. The first approach is a questionnaire based self-evaluation metric, which estimate the PD severity through using self-evaluation score on pre-designed questions. Based on the results of the first approach, a smart phone based approach was invented. The approach takes advantage of the mobile computing technology and clinical decision support approach to evaluate the motor performance of patient daily activity and provide the longitudinal disease assessment and monitoring. Both approaches have been validated on recruited PD patients at the movement disorder program of Barrow Neurological Clinic (BNC) at St Joseph's Hospital and Medical Center. The results of validation tests showed favorable accuracy on detecting and assessing critical symptoms of PD, and shed light on promising future of implementing mobile platform based PD evaluation and monitoring tools to facilitate PD management.
ContributorsPan, Di (Author) / Petitti, Diana (Thesis advisor) / Greenes, Robert (Committee member) / Johnson, William (Committee member) / Dhall, Rohit (Committee member) / Arizona State University (Publisher)
Created2013