Matching Items (4)
Filtering by

Clear all filters

154120-Thumbnail Image.png
Description
Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach

Online programming communities are widely used by programmers for troubleshooting or various problem solving tasks. Large and ever increasing volume of posts on these communities demands more efforts to read and comprehend thus making it harder to find relevant information. In my thesis; I designed and studied an alternate approach by using interactive network visualization to represent relevant search results for online programming discussion forums.

I conducted user study to evaluate the effectiveness of this approach. Results show that users were able to identify relevant information more precisely via visual interface as compared to traditional list based approach. Network visualization demonstrated effective search-result navigation support to facilitate user’s tasks and improved query quality for successive queries. Subjective evaluation also showed that visualizing search results conveys more semantic information in efficient manner and makes searching more effective.
ContributorsMehta, Vishal Vimal (Author) / Hsiao, Ihan (Thesis advisor) / Walker, Erin (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2015
154632-Thumbnail Image.png
Description
Online discussion forums have become an integral part of education and are large repositories of valuable information. They facilitate exploratory learning by allowing users to review and respond to the work of others and approach learning in diverse ways. This research investigates the different comment semantic features and the effect

Online discussion forums have become an integral part of education and are large repositories of valuable information. They facilitate exploratory learning by allowing users to review and respond to the work of others and approach learning in diverse ways. This research investigates the different comment semantic features and the effect they have on the quality of a post in a large-scale discussion forum. We survey the relevant literature and employ the key content quality identification features. We then construct comment semantics features and build several regression models to explore the value of comment semantics dynamics. The results reconfirm the usefulness of several essential quality predictors, including time, reputation, length, and editorship. We also found that comment semantics are valuable to shape the answer quality. Specifically, the diversity of comments significantly contributes to the answer quality. In addition, when searching for good quality answers, it is important to look for global semantics dynamics (diversity), rather than observe local differences (disputable content). Finally, the presence of comments shepherd the community to revise the posts by attracting attentions to the posts and eventually facilitate the editing process.
ContributorsAggarwal, Adithya (Author) / Hsiao, Ihan (Thesis advisor) / Lopez, Claudia (Committee member) / Walker, Erin (Committee member) / Arizona State University (Publisher)
Created2016
154260-Thumbnail Image.png
Description
Online learning communities have changed the way users learn due to the technological affordances web 2.0 has offered. This shift has produced different kinds of learning communities like massive open online courses (MOOCs), learning management systems (LMS) and question and answer based learning communities. Question and answer based communities are an

Online learning communities have changed the way users learn due to the technological affordances web 2.0 has offered. This shift has produced different kinds of learning communities like massive open online courses (MOOCs), learning management systems (LMS) and question and answer based learning communities. Question and answer based communities are an important part of social information seeking. Thousands of users participate in question and answer based communities on the web like Stack Overflow, Yahoo Answers and Wiki Answers. Research in user participation in different online communities identifies a universal phenomenon that a few users are responsible for answering a high percentage of questions and thus promoting the sustenance of a learning community. This principle implies two major categories of user participation, people who ask questions and those who answer questions. In this research, I try to look beyond this traditional view, identify multiple subtler user participation categories. Identification of multiple categories of users helps to provide specific support by treating each of these groups of users separately, in order to maintain the sustenance of the community.

In this thesis, participation behavior of users in an open and learning based question and answer community called OpenStudy has been analyzed. Initially, users were grouped into different categories based on the number of questions they have answered like non participators, sample participators, low, medium and high participators. In further steps, users were compared across several features which reflect temporal, content and question/thread specific dimensions of user participation including those suggestive of learning in OpenStudy.

The goal of this thesis is to analyze user participation in three steps:

a. Inter group participation analysis: compare pre assumed user groups across the participation features extracted from OpenStudy data.

b. Intra group participation analysis: Identify sub groups in each category and examine how participation differs within each group with help of unsupervised learning techniques.

c. With these grouping insights, suggest what interventions might support the categories of users for the benefit of users and community.

This thesis presents new insights into participation because of the broad range of

features extracted and their significance in understanding the behavior of users in this learning community.
ContributorsSamala, Ritesh Reddy (Author) / Walker, Erin (Thesis advisor) / VanLehn, Kurt (Committee member) / Hsieh, Gary (Committee member) / Wetzel, Jon (Committee member) / Arizona State University (Publisher)
Created2015
157884-Thumbnail Image.png
Description
Concept maps are commonly used knowledge visualization tools and have been shown to have a positive impact on learning. The main drawbacks of concept mapping are the requirement of training, and lack of feedback support. Thus, prior research has attempted to provide support and feedback in concept mapping, such as

Concept maps are commonly used knowledge visualization tools and have been shown to have a positive impact on learning. The main drawbacks of concept mapping are the requirement of training, and lack of feedback support. Thus, prior research has attempted to provide support and feedback in concept mapping, such as by developing computer-based concept mapping tools, offering starting templates and navigational supports, as well as providing automated feedback. Although these approaches have achieved promising results, there are still challenges that remain to be solved. For example, there is a need to create a concept mapping system that reduces the extraneous effort of editing a concept map while encouraging more cognitively beneficial behaviors. Also, there is little understanding of the cognitive process during concept mapping. What’s more, current feedback mechanisms in concept mapping only focus on the outcome of the map, instead of the learning process.

This thesis work strives to solve the fundamental research question: How to leverage computer technologies to intelligently support concept mapping to promote meaningful learning? To approach this research question, I first present an intelligent concept mapping system, MindDot, that supports concept mapping via innovative integration of two features, hyperlink navigation, and expert template. The system reduces the effort of creating and modifying concept maps while encouraging beneficial activities such as comparing related concepts and establishing relationships among them. I then present the comparative strategy metric that modes student learning by evaluating behavioral patterns and learning strategies. Lastly, I develop an adaptive feedback system that provides immediate diagnostic feedback in response to both the key learning behaviors during concept mapping and the correctness and completeness of the created maps.

Empirical evaluations indicated that the integrated navigational and template support in MindDot fostered effective learning behaviors and facilitating learning achievements. The comparative strategy model was shown to be highly representative of learning characteristics such as motivation, engagement, misconceptions, and predicted learning results. The feedback tutor also demonstrated positive impacts on supporting learning and assisting the development of effective learning strategies that prepare learners for future learning. This dissertation contributes to the field of supporting concept mapping with designs of technological affordances, a process-based student model, an adaptive feedback tutor, empirical evaluations of these proposed innovations, and implications for future support in concept mapping.
ContributorsWang, Shang (Author) / Walker, Erin (Thesis advisor) / VanLehn, Kurt (Committee member) / Hsiao, Sharon (Committee member) / Long, Yanjin (Committee member) / Arizona State University (Publisher)
Created2019