Matching Items (11)
Filtering by

Clear all filters

150987-Thumbnail Image.png
Description
In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned

In this dissertation, two interrelated problems of service-based systems (SBS) are addressed: protecting users' data confidentiality from service providers, and managing performance of multiple workflows in SBS. Current SBSs pose serious limitations to protecting users' data confidentiality. Since users' sensitive data is sent in unencrypted forms to remote machines owned and operated by third-party service providers, there are risks of unauthorized use of the users' sensitive data by service providers. Although there are many techniques for protecting users' data from outside attackers, currently there is no effective way to protect users' sensitive data from service providers. In this dissertation, an approach is presented to protecting the confidentiality of users' data from service providers, and ensuring that service providers cannot collect users' confidential data while the data is processed or stored in cloud computing systems. The approach has four major features: (1) separation of software service providers and infrastructure service providers, (2) hiding the information of the owners of data, (3) data obfuscation, and (4) software module decomposition and distributed execution. Since the approach to protecting users' data confidentiality includes software module decomposition and distributed execution, it is very important to effectively allocate the resource of servers in SBS to each of the software module to manage the overall performance of workflows in SBS. An approach is presented to resource allocation for SBS to adaptively allocating the system resources of servers to their software modules in runtime in order to satisfy the performance requirements of multiple workflows in SBS. Experimental results show that the dynamic resource allocation approach can substantially increase the throughput of a SBS and the optimal resource allocation can be found in polynomial time
ContributorsAn, Ho Geun (Author) / Yau, Sik-Sang (Thesis advisor) / Huang, Dijiang (Committee member) / Ahn, Gail-Joon (Committee member) / Santanam, Raghu (Committee member) / Arizona State University (Publisher)
Created2012
136547-Thumbnail Image.png
Description
The introduction of novel information technology within contemporary healthcare settings presents a critical juncture for the industry and thus lends itself to the importance of better understanding the impact of this emerging "health 2.0" landscape. Simply, how such technology may affect the healthcare system is still not fully realized, despite

The introduction of novel information technology within contemporary healthcare settings presents a critical juncture for the industry and thus lends itself to the importance of better understanding the impact of this emerging "health 2.0" landscape. Simply, how such technology may affect the healthcare system is still not fully realized, despite the ever-growing need to adopt it in order to serve a growing patient population. Thus, two pertinent questions are posed: is HIT useful and practical and, if so, what is the best way to implement it? This study examined the clinical implementation of specific instances of health information technology (HIT) so as to weigh its benefits and risks to ultimately construct a proposal for successful widespread adoption. Due to the poignancy of information analysis within HIT, Information Measurement Theory (IMT) was used to measure the effectiveness of current HIT systems as well as to elucidate improvements for future implementation. The results indicate that increased transparency, attention to patient-focused approaches and proper IT training will not only allow HIT to better serve the community, but will also decrease inefficient healthcare expenditure.
ContributorsMaietta, Myles Anthony (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor) / School of Life Sciences (Contributor)
Created2015-05
134879-Thumbnail Image.png
Description
The purpose of this project was to implement and analyze a new proposed rootkit that claims a greater level of stealth by hiding in cache. Today, the vast majority of embedded devices are powered by ARM processors. To protect their processors from attacks, ARM introduced a hardware security extension known

The purpose of this project was to implement and analyze a new proposed rootkit that claims a greater level of stealth by hiding in cache. Today, the vast majority of embedded devices are powered by ARM processors. To protect their processors from attacks, ARM introduced a hardware security extension known as TrustZone. It provides an isolated execution environment within the embedded device that enables us to run various memory integrity and malware detection tools to identify possible breaches in security to the normal world. Although TrustZone provides this additional layer of security, it also adds another layer of complexity, and thus comes with its own set of vulnerabilities. This new rootkit identifies and exploits a cache incoherence in the ARM device as a result of TrustZone. The newly proposed rootkit, called CacheKit, takes advantage of this cache incoherence to avoid memory introspection from tools in secure world. We implement CacheKit on the i.MX53 development board, which features a single ARM Cortex A8 processor, to analyze the limitations and vulnerabilities described in the original paper. We set up the Linux environment on the computer to be able to cross-compile for the development board which will be running the FreeScale android 2.3.4 platform with a 2.6.33 Linux kernel. The project is implemented as a kernel module that once installed on the board can manipulate cache as desired to conceal the rootkit. The module exploits the fact that in TrustZone, the secure world does not have access to the normal world cache. First, a technique known as Cache-asRAM is used to ensure that the rootkit is loaded only into cache of the normal world where it can avoid detection from the secure world. Then, we employ the cache maintenance instructions and resisters provided in the cp15 coprocessor to keep the code persistent in cache. Furthermore, the cache lines are mapped to unused I/O address space so that if cache content is flushed to RAM for inspection, the data is simply lost. This ensures that even if the rootkit were to be flushed into memory, any trace of the malicious code would be lost. CacheKit prevents defenders from analyzing the code and destroys any forensic evidence. This provides attackers with a new and powerful tool that is excellent for certain scenarios that were previously thought to be secure. Finally, we determine the limitations of the prototype to determine possible areas for future growth and research into the security of networked embedded devices.
ContributorsGutierrez Barnett, Mauricio Antonio (Author) / Zhao, Ziming (Thesis director) / Doupe, Adam (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147677-Thumbnail Image.png
Description

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions, like Arizona State University (ASU), to make strategic and operational

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions, like Arizona State University (ASU), to make strategic and operational changes to combat the SARS-CoV-2 pandemic. At ASU, information technology was one of the six facets identified in the ongoing review of the ASU Biodesign Clinical Testing Laboratory (ABCTL) among business, communications, management/training, law, and clinical analysis. The first chapter of this manuscript covers the background of clinical laboratory automation and details the automated laboratory workflow to perform ABCTL’s COVID-19 diagnostic testing. The second chapter discusses the usability and efficiency of key information technology systems of the ABCTL. The third chapter explains the role of quality control and data management within ABCTL’s use of information technology. The fourth chapter highlights the importance of data modeling and 10 best practices when responding to future public health emergencies.

ContributorsWoo, Sabrina (Co-author) / Leung, Michael (Co-author) / Kandan, Mani (Co-author) / Knox, Garrett (Co-author) / Compton, Carolyn (Thesis director) / Dudley, Sean (Committee member) / School of Life Sciences (Contributor) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147542-Thumbnail Image.png
Description

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions, like Arizona State University (ASU), to make strategic and operational

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020, this virus's deadly nature has required clinical testing to meet 2020's demands of higher throughput, higher accuracy and higher efficiency. Information technology has allowed institutions, like Arizona State University (ASU), to make strategic and operational changes to combat the SARS-CoV-2 pandemic. At ASU, information technology was one of the six facets identified in the ongoing review of the ASU Biodesign Clinical Testing Laboratory (ABCTL) among business, communications, management/training, law, and clinical analysis. The first chapter of this manuscript covers the background of clinical laboratory automation and details the automated laboratory workflow to perform ABCTL’s COVID-19 diagnostic testing. The second chapter discusses the usability and efficiency of key information technology systems of the ABCTL. The third chapter explains the role of quality control and data management within ABCTL’s use of information technology. The fourth chapter highlights the importance of data modeling and 10 best practices when responding to future public health emergencies.

ContributorsLeung, Michael (Co-author) / Kandan, Mani (Co-author) / Knox, Garrett (Co-author) / Woo, Sabrina (Co-author) / Compton, Carolyn (Thesis director) / Dudley, Sean (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147552-Thumbnail Image.png
Description

This project is designed as part of the multi-student ASU Biodesign Clinical Testing Laboratory (ABCTL) thesis project sponsored and organized by Dr. Carolyn Compton, professor of Life Sciences at ASU and medical director with the ABCTL. This project divides students into teams with Business, Law, Laboratory, IT, and Documentary focused

This project is designed as part of the multi-student ASU Biodesign Clinical Testing Laboratory (ABCTL) thesis project sponsored and organized by Dr. Carolyn Compton, professor of Life Sciences at ASU and medical director with the ABCTL. This project divides students into teams with Business, Law, Laboratory, IT, and Documentary focused groups, with the goal of providing a comprehensive overview of the operations of the ABCTL as a reference for other institutions and to produce a documentary film about the laboratory. As a member of the IT team, this writeup will focus on quality control throughout the transfer of data in the testing process, security and privacy of data, HIPAA and regulatory compliance, and accessibility of data while maintaining such restrictions.

ContributorsKnox, Garrett (Co-author) / Leung, Michael (Co-author) / Kandan, Mani (Co-author) / Woo, Sabrinia (Co-author) / Compton, Carolyn (Thesis director) / Dudley, Sean (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147796-Thumbnail Image.png
Description

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020,<br/>this virus's deadly nature has required clinical testing to meet 2020's demands of higher<br/>throughput, higher accuracy and higher efficiency. Information technology has allowed<br/>institutions, like Arizona State University (ASU), to make strategic and operational changes to<br/>combat the

As much as SARS-CoV-2 has altered the way humans live since the beginning of 2020,<br/>this virus's deadly nature has required clinical testing to meet 2020's demands of higher<br/>throughput, higher accuracy and higher efficiency. Information technology has allowed<br/>institutions, like Arizona State University (ASU), to make strategic and operational changes to<br/>combat the SARS-CoV-2 pandemic. At ASU, information technology was one of the six facets<br/>identified in the ongoing review of the ASU Biodesign Clinical Testing Laboratory (ABCTL)<br/>among business, communications, management/training, law, and clinical analysis. The first<br/>chapter of this manuscript covers the background of clinical laboratory automation and details<br/>the automated laboratory workflow to perform ABCTL’s COVID-19 diagnostic testing. The<br/>second chapter discusses the usability and efficiency of key information technology systems of<br/>the ABCTL. The third chapter explains the role of quality control and data management within<br/>ABCTL’s use of information technology. The fourth chapter highlights the importance of data<br/>modeling and 10 best practices when responding to future public health emergencies.

ContributorsKandan, Mani (Co-author) / Leung, Michael (Co-author) / Woo, Sabrina (Co-author) / Knox, Garrett (Co-author) / Compton, Carolyn (Thesis director) / Dudley, Sean (Committee member) / Computer Science and Engineering Program (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This project aimed to understand what best practices for leadership in the Information Technology sector and if it could be consolidated for a comprehensive learning plan. This learning plan was housed on a traditional LMS (Canvas) and utilized a combination of IT Management research, interviews conducted with five industry members

This project aimed to understand what best practices for leadership in the Information Technology sector and if it could be consolidated for a comprehensive learning plan. This learning plan was housed on a traditional LMS (Canvas) and utilized a combination of IT Management research, interviews conducted with five industry members (all boasting five or more years of work experience), and an analysis of six top institution IT Leadership programs, to create a template. For the provided questionnaires, participants were asked to consider their time in the industry and discuss work culture dynamics, distribution of power, and what pain points were felt in their daily operations. All participants also described their direct roles and seniority, ranging from self-described “middle” to ”high” level placements. Based on these interviews, much of what seems to halt productivity and employee satisfaction regularly comes from a lack of concise and regular communication and a need for more understanding regarding team members' drive or capabilities. Regarding the program evaluation, six IT Leadership programs were chosen, where five were constructed by higher education institutions and one from a certificate governing body. The top skills identified across all programs were communication and decision-making. Communication is an all-encompassing idea for collaboration and strong speaking skills, with programs 1,4,5, and 6 noting their importance. Decision-making in this context is about both work delegation and firm problem-solving. For work delegation, it was pointed out in the interviews that techs and engineers see strong leadership utilizing professional judgment as vital to a business’s performance, with all programs but program 4 similarly emphasizing the same. Given this evaluation, the leadership styles used can be identified as Delegative, Strengths-Based, and Transformative. The previously noted interviews and research resulted in a 4-week course demo, which utilized the interviews in conjunction with leadership concepts.

ContributorsOrtiz Leon, David (Author) / O'Flaherty, Katherine (Thesis director) / Rouse, Nick (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor)
Created2023-12
ContributorsOrtiz Leon, David (Author) / O'Flaherty, Katherine (Thesis director) / Rouse, Nick (Committee member) / Barrett, The Honors College (Contributor) / School of Humanities, Arts, and Cultural Studies (Contributor)
Created2023-12