Matching Items (6)
Filtering by

Clear all filters

136610-Thumbnail Image.png
Description
STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at the state, national and global levels. To combat this lack

STEM education stands for science, technology, engineering and mathematics, and is necessary for students to keep up with global competition in the changing job market, technological advancements and challenges of the future. However, American students are lacking STEM achievement at the state, national and global levels. To combat this lack of achievement I propose that STEM instruction should begin in preschool, be integrated into the curriculum and be inquiry based. To support this proposal I created a month-long physics unit for preschoolers in a Head Start classroom. Students investigated the affect of incline, friction and weight on the distance of a rolling object, while developing their pre-math, pre-literacy and social emotional skills.
ContributorsGarrison, Victoria Leigh (Author) / Kelley, Michael (Thesis director) / Dahlstrom, Margo (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2015-05
135841-Thumbnail Image.png
Description
Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this

Over the past few years, the issue of childhood trauma in the United States has become significant. A growing number of children are experiencing abuse, neglect, or some other form of maltreatment each year. Considering the stressful home lives of maltreated children, the one sure sanctuary is school. However, this idea requires teachers to be actively involved in identifying and caring for the children who need it most. Traumatic childhood experiences leave lasting scars on its victims, so it is helpful if teachers learn how to identify and support children who have lived through them. It is unfortunate that teachers will most likely encounter children throughout their career who have experienced horrendous things, but it is a reality. With this being said, teachers need to develop an understanding of what traumatized children live with, and learn how to address these issues with skilled sensitivity. Schools are not just a place where children learn how to read and write; they build the foundation for a successful life. This project was designed to provide teachers with a necessary resource for helping children who have suffered traumatic experiences. The methodology of this project began with interviews with organizations specializing in working with traumatized children such as Arizonans for Children, Free Arts for Abused Children, The Sojourner Center, and UMOM. The next step was a review of the current literature on the subject of childhood trauma. The findings have all been compiled into one, convenient document for teacher use and distribution. Upon completion of this document, an interactive video presentation will be made available through an online education website, so that distribution will be made simpler. Hopefully, teachers will share the information with people in their networks and create a chain reaction. The goal is to make it available to as many teachers as possible, so that more children will receive the support they need.
ContributorsHanrahan, Katelyn Ann (Author) / Dahlstrom, Margo (Thesis director) / Kelley, Michael (Committee member) / Division of Teacher Preparation (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137466-Thumbnail Image.png
Description
Dry and steam NanoBonding™ are conceived and researched to bond Si-based surfaces, via nucleation and growth of a two-dimensional SiOxHy or hydrated SiOxHy interphase connecting surfaces at the nanoscale across macroscopic domains. The motivation is to create strong, long lasting, hermetically bonded sensors with their electronics for the development

Dry and steam NanoBonding™ are conceived and researched to bond Si-based surfaces, via nucleation and growth of a two-dimensional SiOxHy or hydrated SiOxHy interphase connecting surfaces at the nanoscale across macroscopic domains. The motivation is to create strong, long lasting, hermetically bonded sensors with their electronics for the development of an artificial pancreas and to bond solar cells to glass panels for robust photovoltaic technology. The first step in NanoBonding™ is to synthesize smooth surfaces with 20 nm wide atomic terraces via a precursor phase, ß-cSiO2 on Si(100) and oxygen-deficient SiOx on the silica using the Herbots-Atluri process and Entrepix’s spin etching. Smooth precursor phases act as geometric and chemical template to nucleate and grow macroscopic contacting domains where cross bridging occurs via arrays of molecular strands in the hydrated SiOxHy interphase. Steam pressurization is found to catalyze NanoBonding™ consistently, eliminating the need for direct mechanical compression that limits the size and shape of wafers to be bonded in turn, reducing the cost of processing. Total surface energy measurements via 3 Liquids Contact Angle Analysis (3L CAA) enables accurate quantitative analysis of the total surface energy and each of its components. 3L CAA at each step in the process shows that surface energy drops to 42.4 ± 0.6 mJ/m2 from 57.5 ± 1.4 mJ/m2 after the Herbots-Atluri clean of an “As Received” wafer. 3L CAA after steam pressurization Nanobonding™ shows almost complete elimination from 13.8 mJ/m2 ± 1.0 to 0.002 ±- 0.0002 mJ/m2 in the contribution of acceptors to the total free surface energy, and an increase from 0.2 ± .03 to 23.8± 1.6 mJ/m2 in the contribution of donors. This is consistent with an increase in hydroxylation of the ß-cSiO2 surface as a consistent precursor phase for cross-bridging. This research optimizes the use of glycerin, water, and α-bromo-naphtalene in the use of 3L CAA to effectively quantify the components of total free surface energy which helps to better understand the most consistent method for NanoBonding™.
ContributorsBennett-Kennett, Ross Buchanan (Author) / Culbertson, Robert (Thesis director) / Herbots, Nicole (Committee member) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor) / Department of Physics (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05
133227-Thumbnail Image.png
Description
This study explores the significant roles and responsibilities of Arizona physics teachers as well as the effect that these teachers have on students and thus their futures. In a two-fold survey administered to all 194 public comprehensive high school physics teachers with 60% participation, questions regarding the perception and expectations

This study explores the significant roles and responsibilities of Arizona physics teachers as well as the effect that these teachers have on students and thus their futures. In a two-fold survey administered to all 194 public comprehensive high school physics teachers with 60% participation, questions regarding the perception and expectations that physics teachers hold for themselves, students, and school counselors are addressed as well as the corresponding practices. This survey reveals that generally, teachers feel that students have preconceptions about what physics is and what the course requires, and yet approximately half of the teachers do not make significant recruitment efforts. It is pertinent to ask why physics has one of the lowest enrollment statuses out of all the sciences in high school. Even more so, it is crucial to ask why there is a teacher shortage in the subject of physics. In exploring these questions, results to the previously mentioned genres of questions will speak to the issues at hand and are intended to give a robust explanation as to why physics is fading away in Arizona.
ContributorsGagliardi, Toni (Author) / Jackson, Jane (Thesis director) / Culbertson, Robert (Committee member) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135151-Thumbnail Image.png
Description
Semiconductor wafers are analyzed and their total surface energy γT is measured in three components according to the van Oss theory: (1) γLW, surface energy due to Lifshitz-van der Waals forces or dipole interactions, (2) γ+, surface energy due to interactions with electron donors, and (3) γ–, surface energy due

Semiconductor wafers are analyzed and their total surface energy γT is measured in three components according to the van Oss theory: (1) γLW, surface energy due to Lifshitz-van der Waals forces or dipole interactions, (2) γ+, surface energy due to interactions with electron donors, and (3) γ–, surface energy due to interactions with electron acceptors. Surface energy is measured via Three Liquid Contact Angle Analysis (3LCAA), a method of contact angle measurement using the sessile drop technique and three liquids: water, glycerin, and α-bromonaphthalene. This research optimizes the experimental methods of 3LCAA, proving that the technique produces reproducible measurements for surface energy on a variety of surfaces. Wafer surfaces are prepared via thermal oxidation, rapid thermal oxidation, ion beam oxidation, rapid thermal annealing, hydrofluoric acid etching, the RCA clean, the Herbots-Atluri (H-A) process, and the dry and wet anneals used for Dry and Wet NanoBonding™, respectively.
NanoBonding™ is a process for growing molecular bonds between semiconducting surfaces to create a hermetic seal. NanoBonding™ prevents fluid percolation, protecting integrated electronic sensors from corrosive mobile ion species such as sodium. This can extend the lifetime of marine sensors and glucose sensors from less than one week to over two years, dramatically reducing costs and improving quality of life for diabetic patients. Surface energy measurement is critical to understanding and optimizing NanoBonding™. Surface energies are modified through variations on the H-A process, and measured via 3LCAA. The majority of this research focuses on silicon oxide surfaces.
This is the first quantitative measurement of gallium arsenide surface energy in three components. GaAs is a III-V semiconductor with potential commercial use in transistors, but its oxide layer slowly evaporates over time. In subsequent research, 3LCAA may prove key to developing a stable GaAs oxide layer.
ContributorsDavis, Ender (Author) / Herbots, Nicole (Thesis director) / Culbertson, Robert (Committee member) / Watson, Clarizza (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
135967-Thumbnail Image.png
Description
Child abuse is a hard topic to talk about, and even harder to diagnose without proper training. Though there is a list of general characteristics that child abuse victim's exhibit, it could be difficult to diagnose because everyone reacts to maltreatment differently. Teachers are required by law to report any

Child abuse is a hard topic to talk about, and even harder to diagnose without proper training. Though there is a list of general characteristics that child abuse victim's exhibit, it could be difficult to diagnose because everyone reacts to maltreatment differently. Teachers are required by law to report any case where they believe a child is in an abusive environment. Unfortunately, teachers are given the tools to report the abuse, but they lack the knowledge of what to look for. The results are two fold; one is there is an overflow of false reporting, and two, the children who do not having obvious symptoms go unnoticed. This project aims to bridge the gap between these two extremes. It will lower the frequency of false reporting while increasing the chance that a child in need will be helped. The best way to achieve this is through education. The purpose of the study is to create an informational manual for teachers at the kindergarten and elementary level on how to identify child abuse and neglect victims. It will outline the behavioral and physical symptoms of physical abuse, sexual abuse, emotional abuse, and neglect. It will also highlight the importance of realizing that not all maltreatment victims react the same to abuse. It will then follow into advice on how to approach the situation and what questions to ask. The primary form of research was primary observation by volunteering at the Mesa Child Crisis Center (with IRB approval). Interviews were conducted with Child Crisis Center workers, child behavioral psychologists, and Special Victims Unit detectives. The goal of this research is to help teachers better identify children that are at risk of abuse
eglect, and to understand the theory behind their behavior. In the end, teachers will be more informed on the topic so they can better help their students and create a safe environment for them, and be more confident in reporting.
ContributorsBaker, Karen Colette (Author) / Kobojek, Kimberly (Thesis director) / Broberg, Gregory (Committee member) / Kelley, Michael (Committee member) / School of Criminology and Criminal Justice (Contributor) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12