Matching Items (5)
Filtering by

Clear all filters

135646-Thumbnail Image.png
Description
In a dormant state, cancer cells survive chemotherapy leaving the opportunity for cancer cell relapse and metastasis ultimately leading to patient death. A novel aminoglycoside-based hydrogel ‘Amikagel’ developed in Dr. Rege’s lab serves as a platform for a 3D tumor microenvironment (3DTM) mimicking cancer cell dormancy and relapse. Six Amikagels

In a dormant state, cancer cells survive chemotherapy leaving the opportunity for cancer cell relapse and metastasis ultimately leading to patient death. A novel aminoglycoside-based hydrogel ‘Amikagel’ developed in Dr. Rege’s lab serves as a platform for a 3D tumor microenvironment (3DTM) mimicking cancer cell dormancy and relapse. Six Amikagels of varying mechanical stiffness and adhesivities were synthesized and evaluated as platforms for 3DTM formation through cell viability and cell cycle arrest analyses. The impact of fetal bovine serum concentration and bovine serum albumin concentration in the media were studied for their impact on 3DTM formation. These experiments allow us to identify the best possible Amikagel formulation for 3DTM.
ContributorsGjertsen, Haley Nicole (Author) / Rege, Kaushal (Thesis director) / Grandhi, Taraka Sai Pavan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136053-Thumbnail Image.png
Description
Abstract Molecular Engineering of Novel Polymeric Agents for Targeted Cancer Gene Therapy Dana Matthews Cancer gene cell therapy is a strategy that involves the administration of genes for correcting the effect of mutated cancer cells in order to induce tumor cell death. In particular, genes that encode for pro-apoptotic proteins

Abstract Molecular Engineering of Novel Polymeric Agents for Targeted Cancer Gene Therapy Dana Matthews Cancer gene cell therapy is a strategy that involves the administration of genes for correcting the effect of mutated cancer cells in order to induce tumor cell death. In particular, genes that encode for pro-apoptotic proteins can result in death of tumor cells. Prostate cancer is a very common cancer among males in America, and as highly destructive chemotherapy and radiation are generally the only treatments available once the cancer has metastasized, there is a need for the development of treatments that can specifically target and kill prostate cancer cells, while demonstrating low toxicity to other tissue. This experiment will attempt to create such a treatment through gene therapy techniques. The parallel synthesis and DNA binding affinity assay utilized in these experiments have produced a polymer that surpasses pEI-25, a gene delivery polymer standard, in both transfection efficacy and low cytotoxicity and trafficking of polyplexes in the cell, and finding methods to increase the transfection efficacy and specificity of polyplexes for PC3-PSMA cells.
ContributorsMatthews, Dana (Author) / Rege, Kaushal (Thesis director) / Linton, Rebecca (Committee member) / Huang, Huang-Chial (Committee member) / Barrett, The Honors College (Contributor)
Created2008-12
134534-Thumbnail Image.png
Description
This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing facilities for readout. There is still a need to develo

This research addresses the need for improvement in radiation sensors for applications of ionizing radiation such as radiotherapy. The current sensors involved are polymer gel dosimeters, MOSFETs, radio-chromic films, etc. Most of the sensors involved require expensive equipment's and processing facilities for readout. There is still a need to develop better sensors that can be clinically applied. There are numerous groups around the world trying to conceive a better dosimeter. One of the radiation sensors that was developed recently was based on fluorescence signal emitted from the sensor. To advance the field of radiation sensors, a visual indicator has been developed in-lab as a method of detect ionizing radiation. The intensity of change in color is directly dependent on the amount of incident ionizing radiation. An aqueous gold nanoparticle sensor can be used to accurately determine the incident amount of ionizing radiation1. A gold nanoparticle sensor has been developed in lab with the use of hexadecyltrimethylammonium bromide (C16TAB) as the templating molecule. In the presence of ionizing radiation, the colorless gold salt is reduced and templated, creating a dispersion within the fluid1. The formation of suspended nanoparticles leads to a color change that can be visually detected and accurately analyzed through the employment of a spectrometer. Unfortunately, the toxicity of C16TAB is high. It is expected the toxicity can be reduced by replacing C16TAB with an amino acid, as amino acids can act as templating molecules in the solution and many are naturally occuring2. The experiments included a screening of 20 natural amino acids and 12 unnatural amino acids with the gold salt solution in the presence of ionizing radiation. Stability and absorbance testing was conducted on the amino acid sensors. Additional screening of lead amino acid sensors at various concentrations of irradiation was conducted.
ContributorsGupta, Saumya (Co-author) / Rege, Kaushal (Co-author, Thesis director) / Pushpavanam, Karthik (Co-author, Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

Aminoglycosides contain a basic unit of an amino-modified glycoside (sugar) and have potent antibacterial properties used to treat a wide range of bacterial infections, including those that occur in the soft tissue, chest, urinary tract, and endocardial tissue.1, 2 With a broad spectrum of activity and convenient dosing schedule, Aminoglycoside

Aminoglycosides contain a basic unit of an amino-modified glycoside (sugar) and have potent antibacterial properties used to treat a wide range of bacterial infections, including those that occur in the soft tissue, chest, urinary tract, and endocardial tissue.1, 2 With a broad spectrum of activity and convenient dosing schedule, Aminoglycoside helps to effectively fight off Gram-negative bacteria.1, 3 In 1944 an aminoglycoside called streptomycin entered clinical trials to test its effectiveness as an antibiotic.4 After several years other classes of aminoglycosides were discovered such as neomycin, gentamicin, kanamycin, and netilmicin.4 When introduced these antibiotics presented major clinical advancements in the treatment of Tuberculosis and other bacterial infections.3, 4 However their use in modern medicine has diminished due to their toxicity, required parenteral delivery, and the availability of alternative antibiotics.3, 5 The dose-dependent toxicity of aminoglycosides limits their use due to a narrow range of safe aminoglycoside plasma concentrations.3, 5 Exceeding this range in non-target tissues can lead to negative effects on the audio-vestibular apparatus and kidneys.3, 5, 6 In the 1980’s, clinicians began treating infections with antibiotics that were perceived as less toxic and providing broader antibacterial activity.7 This resulted in aminoglycosides being prescribed for more persistent infections that were resistant to other antibiotics.3 With the amount of antibiotic resistant bacteria increasing, many scientists have begun looking into methods for minimizing aminoglycoside toxicity and maximizing its antibacterial activity.3, 8 These methods include encapsulation and polymer conjugation.9, 10 By encapsulating aminoglycosides in liposomes or other vesicles scientists aim to increase its concentration in infected tissues while decreasing nephro- and ototoxicity.9 With conjugated polymers scientists have created polymer complexes containing aminoglycosides and other compounds such as dopamine.11 The goal of these polymers is to limit toxicity by slowing antibiotic release and increasing efficacy of the antibiotic through targeted delivery and toxicity of other compounds.9, 10, 11 Other than its use in treating infections, aminoglycosides are gaining attention as an excellent vehicle for gene delivery.12 In this application aminoglycosides are used to correct a genetic defect by introducing a normal copy of the gene into affected cells.12,13 Currently scientists are assessing aminoglycosides for gene therapy in the treatment of cancer and various other diseases.12, 14 This review will focus on the diverse customizability of aminoglycosides in treating infections and as vehicles for gene therapy.

ContributorsWampler, Cole (Author) / Rege, Kaushal (Thesis director) / Schoepf, Jared (Committee member) / Barrett, The Honors College (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Chemical Engineering Program (Contributor) / School of Life Sciences (Contributor)
Created2023-05
166211-Thumbnail Image.png
Description

The current clinical gold standards for tissue sealing include sutures, staples, and glues, however several adverse effects limit their use. Sutures and staples inherently cause additional trauma to tissue surrounding the wound, and glues can be lacking in adhesion and are potentially inflammatory. All three also introduce risk of infection.

The current clinical gold standards for tissue sealing include sutures, staples, and glues, however several adverse effects limit their use. Sutures and staples inherently cause additional trauma to tissue surrounding the wound, and glues can be lacking in adhesion and are potentially inflammatory. All three also introduce risk of infection. Light-activated tissue sealing, particularly the use of near-infrared light, is an attractive alternative, as it localizes heat, thereby preventing thermal damage to the surrounding healthy tissue. Previous work identified a glutaraldehyde-crosslinked chitosan film as a lead sealant for gastrointestinal incision sealing, but in vivo testing resulted in tissue degradation in and around the wound. The suggested causes for this degradation were excess acetic acid, endotoxins in the chitosan, and thermal damage. A basic buffer wash protocol was developed to remove excess acid from the films following fabrication. UV-Vis spectroscopy demonstrated that following the wash, films had the same concentration of Indocyanine green as unwashed films, allowing them to absorb light at the same wavelength, therefore showing the wash did not affect the film’s function. However subsequent washes led to degradation of film mass of nearly 20%. Standard chitosan films had significantly greater mass gain (p = 0.028) and significantly less subsequent loss (p= 0.012) than endotoxin free chitosan-films after soaking in phosphate buffered saline for varying durations , while soaking duration had no effect (p = 0.332). Leak pressure testing of films prepared with varying numbers of buffer washes, laser temperature, and lasering time revealed no significant interaction between any of the 3 variables. As such, it was confirmed that proceeding with in vivo testing with the buffer wash, various lasering temperatures, and laser times would not affect the sealing performance of the films. Future investigation will involve characterization of additional materials that may be effective for sealing of internal wounds, as well as drug loading of agents that may hasten the healing process.

ContributorsSira, Antara (Author) / Rege, Kaushal (Thesis director) / Weaver, Jessica (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05