Matching Items (5)
Filtering by

Clear all filters

151635-Thumbnail Image.png
Description
Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and

Libby Larsen is one of the most performed and acclaimed composers today. She is a spirited, compelling, and sensitive composer whose music enhances the poetry of America's most prominent authors. Notable among her works are song cycles for soprano based on the poetry of female writers, among them novelist and poet Willa Cather (1873-1947). Larsen has produced two song cycles on works from Cather's substantial output of fiction: one based on Cather's short story, "Eric Hermannson's Soul," titled Margaret Songs: Three Songs from Willa Cather (1996); and later, My Antonia (2000), based on Cather's novel of the same title. In Margaret Songs, Cather's poetry and short stories--specifically the character of Margaret Elliot--combine with Larsen's unique compositional style to create a surprising collaboration. This study explores how Larsen in these songs delves into the emotional and psychological depths of Margaret's character, not fully formed by Cather. It is only through Larsen's music and Cather's poetry that Margaret's journey through self-discovery and love become fully realized. This song cycle is a glimpse through the eyes of two prominent female artists on the societal pressures placed upon Margaret's character, many of which still resonate with women in today's culture. This study examines the work Margaret Songs by discussing Willa Cather, her musical influences, and the conditions surrounding the writing of "Eric Hermannson's Soul." It looks also into Cather's influence on Libby Larsen and the commission leading to Margaret Songs. Finally, a description of the musical, dramatic, and textual content of the songs completes this interpretation of the interactions of Willa Cather, Libby Larsen, and the character of Margaret Elliot.
ContributorsMcLain, Christi Marie (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Holbrook, Amy (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151660-Thumbnail Image.png
Description
Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility

Puerto Rico has produced many important composers who have contributed to the musical culture of the nation during the last 200 years. However, a considerable amount of their music has proven to be difficult to access and may contain numerous errors. This research project intends to contribute to the accessibility of such music and to encourage similar studies of Puerto Rican music. This study focuses on the music of Héctor Campos Parsi (1922-1998), one of the most prominent composers of the 20th century in Puerto Rico. After an overview of the historical background of music on the island and the biography of the composer, four works from his art song repertoire are given for detailed examination. A product of this study is the first corrected edition of his cycles Canciones de Cielo y Agua, Tres Poemas de Corretjer, Los Paréntesis, and the song Majestad Negra. These compositions date from 1947 to 1959, and reflect both the European and nationalistic writing styles of the composer during this time. Data for these corrections have been obtained from the composer's manuscripts, published and unpublished editions, and published recordings. The corrected scores are ready for publication and a compact disc of this repertoire, performed by soprano Melliangee Pérez and the author, has been recorded to bring to life these revisions. Despite the best intentions of the author, the various copyright issues have yet to be resolved. It is hoped that this document will provide the foundation for a resolution and that these important works will be available for public performance and study in the near future.
ContributorsRodríguez Morales, Luis F., 1980- (Author) / Campbell, Andrew (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Kopta, Anne (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151266-Thumbnail Image.png
Description
This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous carbon films on Si substrates are measured by Ellipsometry method

This dissertation provides a fundamental understanding of the properties of mesoporous carbon based materials and the utilization of those properties into different applications such as electrodes materials for super capacitors, adsorbents for water treatments and biosensors. The thickness of mesoporous carbon films on Si substrates are measured by Ellipsometry method and pore size distribution has been calculated by Kelvin equation based on toluene adsorption and desorption isotherms monitored by Ellipsometer. The addition of organometallics cobalt and vanalyl acetylacetonate in the synthesis precursor leads to the metal oxides in the carbon framework, which largely decreased the shrink of the framework during carbonization, resulting in an increase in the average pore size. In addition to the structural changes, the introduction of metal oxides into mesoporous carbon framework greatly enhances the electrochemical performance as a result of their pseudocapacitance. Also, after the addition of Co into the framework, the contraction of mesoporous powders decreased significantly and the capacitance increased prominently because of the solidification function of CoO nanoparticles. When carbon-cobalt composites are used as adsorbent, the adsorption capacity of dye pollutant in water is remarkably higher (90 mg/g) after adding Co than the mesoporous carbon powder (2 mg/g). Furthermore, the surface area and pore size of mesoporous composites can be greatly increased by addition of tetraethyl orthosilicate into the precursor with subsequent etching, which leads to a dramatic increase in the adsorption capacity from 90 mg/g up to 1151 mg/g. When used as electrode materials for amperometric biosensors, mesoporous carbons showed good sensitivity, selectivity and stability. And fluorine-free and low-cost poly (methacrylate)s have been developed as binders for screen printed biosensors. With using only 5wt% of poly (hydroxybutyl methacrylate), the glucose sensor maintained mechanical integrity and exhibited excellent sensitivity on detecting glucose level in whole rabbit blood. Furthermore, extremely high surface area mesoporous carbons have been synthesized by introducing inorganic Si precursor during self-assembly, which effectively determined norepinephrine at very low concentrations.
ContributorsDai, Mingzhi (Author) / Vogt, Bryan D (Thesis advisor) / La Belle, Jeffrey T (Committee member) / Dai, Lenore (Committee member) / Nielsen, David R (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012
155565-Thumbnail Image.png
Description
The American Diabetes Association reports that diabetes costs $322 billion annually and affects 29.1 million Americans. The high out-of-pocket cost of managing diabetes can lead to noncompliance causing serious and expensive complications. There is a large market potential for a more cost-effective alternative to the current market standard of screen-printed

The American Diabetes Association reports that diabetes costs $322 billion annually and affects 29.1 million Americans. The high out-of-pocket cost of managing diabetes can lead to noncompliance causing serious and expensive complications. There is a large market potential for a more cost-effective alternative to the current market standard of screen-printed self-monitoring blood glucose (SMBG) strips. Additive manufacturing, specifically 3D printing, is a developing field that is growing in popularity and functionality. 3D printers are now being used in a variety of applications from consumer goods to medical devices. Healthcare delivery will change as the availability of 3D printers expands into patient homes, which will create alternative and more cost-effective methods of monitoring and managing diseases, such as diabetes. 3D printing technology could transform this expensive industry. A 3D printed sensor was designed to have similar dimensions and features to the SMBG strips to comply with current manufacturing standards. To make the sensor electrically active, various conductive filaments were tested and the conductive graphene filament was determined to be the best material for the sensor. Experiments were conducted to determine the optimal print settings for printing this filament onto a mylar substrate, the industry standard. The reagents used include a mixture of a ferricyanide redox mediator and flavin adenine dinucleotide dependent glucose dehydrogenase. With these materials, each sensor only costs $0.40 to print and use. Before testing the 3D printed sensor, a suitable design, voltage range, and redox probe concentration were determined. Experiments demonstrated that this novel 3D printed sensor can accurately correlate current output to glucose concentration. It was verified that the sensor can accurately detect glucose levels from 25 mg/dL to 400 mg/dL, with an R2 correlation value as high as 0.97, which was critical as it covered hypoglycemic to hyperglycemic levels. This demonstrated that a 3D-printed sensor was created that had characteristics that are suitable for clinical use. This will allow diabetics to print their own test strips at home at a much lower cost compared to SMBG strips, which will reduce noncompliance due to the high cost of testing. In the future, this technology could be applied to additional biomarkers to measure and monitor other diseases.
ContributorsAdams, Anngela (Author) / LaBelle, Jeffrey (Thesis advisor) / Pizziconi, Vincent (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2017
151677-Thumbnail Image.png
Description
Changes to the microenvironment of the endothelium can produce significant changes in the response of endothelial cells to stimuli. Human Aortic Endothelial Cells (HAECs) are tested in vitro for their fluid shear stress response when their substrates, and the solute concentrations of the fluids to which they are exposed, are

Changes to the microenvironment of the endothelium can produce significant changes in the response of endothelial cells to stimuli. Human Aortic Endothelial Cells (HAECs) are tested in vitro for their fluid shear stress response when their substrates, and the solute concentrations of the fluids to which they are exposed, are modulated, and for their nitric oxide expression when they are exposed to hyperglycemic conditions. ImageJ is used to quantify either the degree of cellular alignment and elongation with the direction of flow, or the relative NO expression using the fluorochrome DAF-2. First, the results of Brower, et.al. are replicated: HAECs under normal glucose (4mM) conditions align and elongate with flow (p<<0.05), while high glucose (30.5mM) conditions negate this effect (p<<0.05) and is likely the result of Advanced Glycation End-products (AGEs). Then, in this study it is found that substitution of fibronectin for gelatin substrates does not impair flow (p<<0.05), indicating that fibronectin likely does not participate in the initiation of vascular lesions. High palmitic acid also does not prevent HAEC shear response (p<<0.05), which is consistent with Brower's predictions that AGEs are responsible for impaired elongation and alignment. NO production is significantly increased (p<<0.025) in HAECs cultured 24 hours under high glucose (30.5mM) conditions compared with normal glucose (4mM) conditions, indicating the presence of inducible nitric oxide as part of an inflammatory response. Aminoguanidine (5mM) added to high glucose concentrations reduces, but does not eliminate NO production (p<<0.05), likely due to insufficient concentration. Modulation of the endothelial microenvironment leads to pronounced changes in HAEC behavior with regards to NO production under hyperglycemic conditions. Diabetic model rat aortas are explanted and imaged for the purpose of detecting aortic endothelial cell alignment and elongation; improvements in this method are discussed. A microvessel chamber used with explanted human tissue is re-fit to reduce required volumes of solutions and allow more effective experimentation.
ContributorsLehnhardt, Eric (Author) / Caplan, Michael R (Thesis advisor) / Targovnik, Jerome (Committee member) / Sierks, Michael (Committee member) / Arizona State University (Publisher)
Created2013