Matching Items (4)
Filtering by

Clear all filters

134303-Thumbnail Image.png
Description
Vitamins and minerals are, by definition, essential substances that are necessary for good health, and needed by every cell and organ to function appropriately. A deficiency of any one vitamin or mineral can be very serious. Although a very healthy diet rich in vegetables, fruits, and protein can provide sufficient

Vitamins and minerals are, by definition, essential substances that are necessary for good health, and needed by every cell and organ to function appropriately. A deficiency of any one vitamin or mineral can be very serious. Although a very healthy diet rich in vegetables, fruits, and protein can provide sufficient amounts of most vitamins and minerals, many people do not consume an adequate diet. During pregnancy, there is an increased need for vitamins and minerals to promote a healthy pregnancy and a healthy baby. Prenatal supplements are intended to supplement a normal diet to ensure that adequate amounts of vitamins and minerals are consumed. The US Food and Drug Administration (FDA) has established Recommended Dietary Allowances for total vitamin/mineral intake from food and supplements, but they have not established recommendations for prenatal supplements. Therefore, there is a very wide variation in the content and quality of prenatal supplements. Many prenatal supplements contain only minimal levels of some vitamins and few or no minerals, in order to minimize cost and the number of pills. This results in insufficient vitamin/mineral supplementation for many women, and hence does not fully protect them or their children from pregnancy complications and health problems. Therefore, we have created our own set of recommendations for prenatal supplements. Our recommendations are based primarily on four sources: 1) FDA's Recommended Daily Allowances for pregnant women, which are estimated to meet the needs of 97.5% of healthy pregnant women. 2) FDA's Tolerable Upper Limit, which is the maximum amount of vitamins/minerals that can be safely consumed without any risk of health problems. 3) National Health and Nutrition Examination Survey (NHANES), which evaluates the average intake of vitamins and minerals by women ages 20-40 years in the US 4) Research studies on vitamin/mineral deficiencies or vitamin/mineral supplementation during pregnancy, and the effect on pregnancy, birth, and child health problems. In summary, the RDA establishes minimum recommended levels of vitamin/mineral intake from all sources, and the NHANES establishes the average intake from foods. The difference is what needs to be consumed in a supplement, on average. However, since people vary greatly in the quality of their diet, and since most vitamins and minerals have a high Tolerable Upper Limit, we generally recommend more than the difference between the RDA and the average NHANES. Vitamins generally have a larger Tolerable Upper Limit than do minerals. So, we recommend that prenatal vitamin/mineral supplements contain 100% of the RDA for most vitamins, and about 50% of the RDA for most minerals. However, based on additional research studies described below, in some cases we vary our recommendations from those averages.
ContributorsSorenson, Jacob (Author) / Adams, James (Thesis director) / Pollard, Elena (Committee member) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
Description

The Healthy Pregnancy Summit is a collection of videos from a variety of specialists detailing how to have a healthy pregnancy and healthy child, based on the latest scientific and medical information. This project summarizes each presentation, and compares to the Healthy Child Guide, a document supplementary to the summit.

The Healthy Pregnancy Summit is a collection of videos from a variety of specialists detailing how to have a healthy pregnancy and healthy child, based on the latest scientific and medical information. This project summarizes each presentation, and compares to the Healthy Child Guide, a document supplementary to the summit. Finally, this project analyzes the overall usefulness of the summit and each presentation, and suggests areas for improvement.

ContributorsKragenbring, Kylee (Author) / Adams, James (Thesis director) / Matthews, Julie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor)
Created2023-05
160098-Thumbnail Image.png
Description

The purpose of this study was to determine the feasibility of a mindfulness-based intervention among pregnant women (12-20 weeks’ gestation) using a mobile meditation app, Calm. This study involved 100 participants who were recruited nationally due to the COVID-19 pandemic. This study was reviewed and approved by the Institutional Review

The purpose of this study was to determine the feasibility of a mindfulness-based intervention among pregnant women (12-20 weeks’ gestation) using a mobile meditation app, Calm. This study involved 100 participants who were recruited nationally due to the COVID-19 pandemic. This study was reviewed and approved by the Institutional Review Board of Arizona State University (STUDY STUDY00010467). All participants were provided an informed consent document and provided electronic consent prior to enrollment and participation in this study. This study was a randomized, controlled trial (trial registration: ClinicalTrials.gov NCT04264910). Participants randomized to the intervention group were asked to participate in a minimum of 10 minutes of daily meditation using a mindfulness meditation mobile app (i.e., Calm) for the duration of their pregnancy. Participants randomized to the standard of care control group were given access to the app after they gave birth. Both the intervention and control groups were administered surveys that measured feasibility outcomes, perceived stress, mindfulness, self-compassion, impact from COVID-19, pregnancy-related anxiety, depression, emotional regulation, sleep, and childbirth experience at four time points: baseline (12-20 weeks gestation), midline (24 weeks gestation), postintervention (36 weeks gestation), and follow-up survey (3-5 weeks postpartum). Data is currently being analyzed for publication.

ContributorsLister, Haily (Author) / Huberty, Jennifer (Thesis director) / Larkey, Linda (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
157179-Thumbnail Image.png
Description
No studies have evaluated the impact of tracking resting energy expenditure (REE) and modifiable health behaviors on gestational weight gain (GWG). In this controlled trial, pregnant women aged >18 years (X=29.8±4.9 years) with a gestational age (GA) <17 weeks were randomized to Breezing™ (N=16) or control (N=12) for 13 weeks.

No studies have evaluated the impact of tracking resting energy expenditure (REE) and modifiable health behaviors on gestational weight gain (GWG). In this controlled trial, pregnant women aged >18 years (X=29.8±4.9 years) with a gestational age (GA) <17 weeks were randomized to Breezing™ (N=16) or control (N=12) for 13 weeks. The Breezing™ group used a real-time metabolism tracker to obtain REE. Anthropometrics, diet, and sleep data were collected every 2 weeks. Rate of GWG was calculated as weight gain divided by total duration. Early (GA weeks 14-21), late (GA weeks 21-28), and overall (GA week 14-28) changes in macronutrients, sleep, and GWG were calculated. Mediation models were constructed using SPSS PROCESS macro using a bootstrap estimation approach with 10,000 samples. The majority of women were non-Hispanic Caucasian (78.6%). A total of 35.7% (n=10), 35.7% (n=10), and 28.6% (n=8) were normal weight, overweight, and obese, respectively, with 83.3% (n=10) and 87.5% (n=14) of the Control and Breezing™ groups gaining above IOM GWG recommendations. At baseline, macronutrient consumption did not differ. Overall (Breezing™ vs. Control; M diff=-349.08±150.77, 95% CI: -660.26 to -37.90, p=0.029) and late (M diff=-379.90±143.89, 95% CI:-676.87 to -82.93, p=0.014) changes in energy consumption significantly differed between the groups. Overall (M diff=-22.45±11.03, 95% CI: -45.20 to 0.31, p=0.053), late (M diff=-23.16±11.23, 95% CI: -46.33 to 0.01, p=0.05), and early (M diff=20.3±10.19, 95% CI: -0.74 to 41.34, p=0.058) changes in protein differed by group. Nocturnal total sleep time differed by study group (Breezing vs. Control; M diff=-32.75, 95% CI: -68.34 to 2.84, p=0.069). There was a 11.5% increase in total REE throughout the study. Early changes in REE (72±211 kcals) were relatively small while late changes (128±294 kcals) nearly doubled. Interestingly, early changes in REE demonstrated a moderate, positive correlation with rates of GWG later in pregnancy (r=0.528, p=0.052), suggesting that REE assessment early in pregnancy may help predict changes in GWG. Changes in macronutrients did not mediate the relationship between the intervention and GWG, nor did sleep mediate relationships between dietary intake and GWG. Future research evaluating REE and dietary composition throughout pregnancy may provide insight for appropriate GWG recommendations.
ContributorsVander Wyst, Kiley Bernhard (Author) / Whisner, Corrie M (Thesis advisor) / Reifsnider, Elizabeth G. (Committee member) / Petrov, Megan E (Committee member) / Buman, Matthew (Committee member) / Shaibi, Gabriel Q (Committee member) / Arizona State University (Publisher)
Created2019