Matching Items (18)
Filtering by

Clear all filters

172900-Thumbnail Image.png
Description

In the early twentieth century, Paul Kammerer conducted a series of experiments to demonstrate that organisms could transmit characteristics acquired in their lifetimes to their offspring. In his 1809 publication, zoologist Jean-Baptiste Lamarck had hypothesized that living beings can inherit features their parents or ancestors acquired throughout life. By breeding

In the early twentieth century, Paul Kammerer conducted a series of experiments to demonstrate that organisms could transmit characteristics acquired in their lifetimes to their offspring. In his 1809 publication, zoologist Jean-Baptiste Lamarck had hypothesized that living beings can inherit features their parents or ancestors acquired throughout life. By breeding salamanders, as well as frogs and other organisms, Kammerer tested Lamarck's hypothesis in an attempt to provide evidence for Lamarck's theory of the inheritance of acquired characteristics. In particular, Kammerer argued that the inheritance of acquired characteristics caused species to evolve, and he claimed that his results provided an explanation for evolutionary processes through developmental phenomena.

Created2014-12-30
172901-Thumbnail Image.png
Description

In the first decade of the twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, conducted research on developmental mechanisms, including a series of breeding experiments on toads (Alytes obstetricans). Kammerer claimed that his results demonstrated that organisms could transmit acquired characteristics to their offspring.

In the first decade of the twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, conducted research on developmental mechanisms, including a series of breeding experiments on toads (Alytes obstetricans). Kammerer claimed that his results demonstrated that organisms could transmit acquired characteristics to their offspring. To explain how evolution occurred, biologist Jean-Baptiste Lamarck in France suggested in his 1809 book that offspring inherited the features their ancestors acquired throughout the lives of those ancestors, a process termed the inheritance of acquired characteristics. Kammerer conducted breeding experiments to test the theory of inheritance of acquired characteristics, which he said described the mechanics of evolution. Additionally, Kammerer's experiments aimed at explaining how development shaped evolutionary processes.

Created2014-12-30
172907-Thumbnail Image.png
Description

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and

Friedrich Leopold August Weismann published Das
Keimplasma: eine Theorie der Vererbung (The Germ-Plasm: a
Theory of Heredity, hereafter The Germ-Plasm) while
working at the University of Freiburg in Freiburg, Germany in 1892.
William N. Parker, a professor in the University College of South
Wales and Monmouthshire in Cardiff, UK, translated The
Germ-Plasm into English in 1893. In The Germ-Plasm,
Weismann proposed a theory of heredity based on the concept of the
germ plasm, a substance in the germ cell that carries hereditary information. The
Germ-Plasm compiled Weismann's theoretical work and analyses of
other biologists' experimental work in the 1880s, and it provided a
framework to study development, evolution and heredity. Weismann
anticipated that the germ-plasm theory would enable researchers to
investigate the functions and material of hereditary substances.

Created2015-01-26
172908-Thumbnail Image.png
Description

In the early twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, experimented on sea-squirts (Ciona intestinalis). Kammerer claimed that results from his experiments demonstrated that organisms could transmit characteristics that they had acquired in their lifetimes to their offspring. Kammerer conducted breeding experiments on sea-squirts

In the early twentieth century, Paul Kammerer, a zoologist working at the Vivarium in Vienna, Austria, experimented on sea-squirts (Ciona intestinalis). Kammerer claimed that results from his experiments demonstrated that organisms could transmit characteristics that they had acquired in their lifetimes to their offspring. Kammerer conducted breeding experiments on sea-squirts and other organisms at a time when Charles Darwin's 1859 theory of evolution lacked evidence to explain how offspring inherited traits from their parents. In 1809, zoologist Jean-Baptiste Lamarck in France theorized that living beings can inherit the features their parents or ancestors acquired during those ancestor's lifetime, a theory called the inheritance of acquired characteristics. Kammerer attempted to provide evidence for the theory of inheritance of acquired characteristics, which constituted, he argued, the mechanics of evolution. Kammerer claimed that his results could explain evolutionary processes through developmental phenomena.

Created2015-04-13
173226-Thumbnail Image.png
Description

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of

In 1893, Julia Barlow Platt published her research on the origins of cartilage in the developing head of the common mudpuppy (Necturus maculosus) embryo. The mudpuppy is an aquatic salamander commonly used by embryologists because its large embryonic cells and nuclei are easy to see. Platt followed the paths of cells in developing mudpuppy embryos to see how embryonic cells migrated during the formation of the head. With her research, Platt challenged then current theories about germ layers, the types of cells in an early embryo that develop into adult cells. In most organisms' development, three types of germ layers are responsible for the formation of tissues and organs. The outermost layer is called ectoderm, the middle layer mesoderm, and the innermost layer endoderm, although Platt called it entoderm. Platt's research provided a basis for scientists to clarify the destination or function of the germ layers in vertebrates' development.

Created2017-03-06
172868-Thumbnail Image.png
Description

The American Eugenics Society (AES) was established in the US by
Madison Grant, Harry H. Laughlin, Henry Crampton, Irving Fisher, and
Henry F. Osborn in 1926 to promote eugenics education programs for
the US public. The AES described eugenics as the study of improving
the genetic

The American Eugenics Society (AES) was established in the US by
Madison Grant, Harry H. Laughlin, Henry Crampton, Irving Fisher, and
Henry F. Osborn in 1926 to promote eugenics education programs for
the US public. The AES described eugenics as the study of improving
the genetic composition of humans through controlled reproduction of
different races and classes of people. The AES aided smaller eugenic
efforts such as the Galton Society in New York, New York, and the
Race Betterment Foundation in Battle Creek, Michigan, and it influenced eugenic policy set by the US Supreme Court in cases
including Buck v. Bell (1927) and Skinner v. Oklahoma
(1942). The AES was renamed the Society for the Study of Social
Biology in 1972.

Created2014-11-22
172873-Thumbnail Image.png
Description

Theophilus Shickel Painter studied the structure and
function of chromosomes in the US during in the early to mid-twentieth century. Painter worked at
the University of Texas at Austin in Austin, Texas. In the 1920s
and 1930s, Painter studied the chromosomes of the salivary gland
giant

Theophilus Shickel Painter studied the structure and
function of chromosomes in the US during in the early to mid-twentieth century. Painter worked at
the University of Texas at Austin in Austin, Texas. In the 1920s
and 1930s, Painter studied the chromosomes of the salivary gland
giant chromosomes of the fruit fly (Drosophila
melanogaster), with Hermann J. Muller. Muller and Painter
studied the ability of X-rays to cause changes in the chromosomes
of fruit flies. Painter also studied chromosomes in mammals.
He investigated the development of the male gamete, a process
called spermatogenesis, in several invertebrates and vertebrates,
including mammals. In addition, Painter studied the role the
Y-chromosome plays in the determination and development of the male
embryo. Painter's research concluded that egg cells fertilized by
sperm cell bearing an X-chromosome resulted in a female embryo,
whereas egg cells fertilized by a sperm cell carrying a
Y-chromosome resulted in a male embryo. Painter's work with
chromosomes helped other researchers determine that X- and
Y-chromosomes are responsible for sex determination.

Created2014-11-22
172876-Thumbnail Image.png
Description

Ontogeny and Phylogeny is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the embryonic development of an organism (ontogeny) and the evolution of

Ontogeny and Phylogeny is a book published in 1977, in which the author Stephen J. Gould, who worked in the US, tells a history of the theory of recapitulation. A theory of recapitulation aims to explain the relationship between the embryonic development of an organism (ontogeny) and the evolution of that organism's species (phylogeny). Although there are several variations of recapitulationist theories, most claim that during embryonic development an organism repeats the adult stages of organisms from those species in it's evolutionary history. Gould suggests that, although fewer biologists invoked recapitulation theories in the twentieth century compared to those in the nineteenth and eighteenth centuries, some aspects of the theory of recapitulation remained important for understanding evolution. Gould notes that the concepts of acceleration and retardation during development entail that changes in developmental timing (heterochrony) can result in a trait appearing either earlier or later than normal in developmental processes. Gould argues that these changes in the timing of embryonic development provide the raw materials or novelties upon which natural selection acts.

Created2014-10-21
172878-Thumbnail Image.png
Description

In 2004, a team of researchers at Tufts-New England
Medical Center in Boston, Massachusetts, investigated the fetal
cells that remained in the maternal blood stream after pregnancy.
The results were published in Transfer of Fetal Cells with
Multilineage Potential to Maternal Tissue. The team working on

In 2004, a team of researchers at Tufts-New England
Medical Center in Boston, Massachusetts, investigated the fetal
cells that remained in the maternal blood stream after pregnancy.
The results were published in Transfer of Fetal Cells with
Multilineage Potential to Maternal Tissue. The team working on that
research included Kiarash Khosrotehrani, Kirby L. Johnson, Dong
Hyun Cha, Robert N. Salomon, and Diana W. Bianchi. The researchers
reported that the fetal cells passed to a pregnant woman during
pregnancy could develop into multiple cell types in her organs. They
studied these differentiated fetal cells in a cohort of women
fighting different diseases. The researchers found that the fetal
cells in the women differentiated into different cell types under
the influence of maternal tissues, and that those differentiated
cells concentrated in the tissue surrounding diseased tissues.
According to the team, this response could be a therapeutic response
to the disease in the once pregnant woman. The research indicated the long
lasting effects of pregnancy in a woman's body.

Created2014-11-14
172882-Thumbnail Image.png
Description

Harry Hamilton Laughlin helped lead the eugenics
movement in the United States during the early twentieth century.
The US eugenics movement of the early twentieth century sought to
reform the genetic composition of the United States population through
sterilization and other restrictive reproductive measures. Laughlin

Harry Hamilton Laughlin helped lead the eugenics
movement in the United States during the early twentieth century.
The US eugenics movement of the early twentieth century sought to
reform the genetic composition of the United States population through
sterilization and other restrictive reproductive measures. Laughlin
worked as superintendent and assistant director of the Eugenics
Research Office (ERO) at Cold Spring Harbor Laboratory in Cold
Spring Harbor, New York, alongside director Charles Davenport.
During Laughlin's career at the ERO, Laughlin studied human familial
ancestry, called pedigrees, and in 1922 published the book Eugenical
Sterilization in the United States, which influenced
sterilization laws in multiple states. Laughlin's support of
compulsory sterilization to control the reproductive capacity of
entire populations influenced the history of eugenics and
reproductive medicine.

Created2014-12-19