Matching Items (21)
Filtering by

Clear all filters

136617-Thumbnail Image.png
Description
We created an Android application, Impromp2, which allows users to search for and save events of interest to them in the Phoenix area. The backend, built on the Parse platform, gathers events daily using Web services and stores them in a database. Impromp2 was designed to improve upon similarly-purposed apps

We created an Android application, Impromp2, which allows users to search for and save events of interest to them in the Phoenix area. The backend, built on the Parse platform, gathers events daily using Web services and stores them in a database. Impromp2 was designed to improve upon similarly-purposed apps available for Android devices in several key ways, especially in user interface design and data interaction capability. This is a full-stack software project that explores databases and their performance considerations, Web services, user interface design, and the challenges of app development for a mobile platform.
ContributorsNorth, Joseph Robert (Author) / Balasooriya, Janaka (Thesis director) / Nakamura, Mutsumi (Committee member) / Faucon, Philippe (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
137309-Thumbnail Image.png
Description
Modern computer processors contain an embedded firmware known as microcode that controls decode and execution of x86 instructions. Although proprietary and relatively obscure, this microcode can be modified using updates released by hardware manufacturers to correct processor logic flaws (errata). At the same time, a malicious microcode update could compromise

Modern computer processors contain an embedded firmware known as microcode that controls decode and execution of x86 instructions. Although proprietary and relatively obscure, this microcode can be modified using updates released by hardware manufacturers to correct processor logic flaws (errata). At the same time, a malicious microcode update could compromise a processor by implementing new malicious instructions or altering the functionality of existing instructions, including processor-accelerated virtualization or cryptographic primitives. Not only is this attack vector capable of subverting all software-enforced security policies and access controls, but it also leaves behind no postmortem forensic evidence since the write-only patch memory is cleared upon system reset. Although supervisor privileges (ring zero) are required to update processor microcode, this attack cannot be easily mitigated due to the implementation of microcode update functionality within processor silicon. In this paper, we reveal the microarchitecture and mechanism of microcode updates, present a security analysis of this attack vector, and provide some mitigation suggestions.
Created2014-05
137481-Thumbnail Image.png
Description
We discuss processes involved in user-centric security design, including the synthesis of goals based on security and usability tasks. We suggest the usage of implicit security and the facilitation of secureuser actions. We propose a process for evaluating usability flaws by treating them as security threats and adapting traditional HCI

We discuss processes involved in user-centric security design, including the synthesis of goals based on security and usability tasks. We suggest the usage of implicit security and the facilitation of secureuser actions. We propose a process for evaluating usability flaws by treating them as security threats and adapting traditional HCI methods. We discuss how to correct these flaws once they are discovered. Finally, we discuss the Usable Security Development Model for developing usable secure systems.
ContributorsJorgensen, Jan Drake (Author) / Ahn, Gail-Joon (Thesis director) / VanLehn, Kurt (Committee member) / Wilkerson, Kelly (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
137152-Thumbnail Image.png
Description
Radio Frequency Identification (RFID) technology allows objects to be identified electronically by way of a small electronic tag. RFID is quickly becoming quite popular, and there are many security hurdles for this technology to overcome. The iCLASS line of RFID, produced by HID Global, is one such technology that is

Radio Frequency Identification (RFID) technology allows objects to be identified electronically by way of a small electronic tag. RFID is quickly becoming quite popular, and there are many security hurdles for this technology to overcome. The iCLASS line of RFID, produced by HID Global, is one such technology that is widely used for secure access control and applications where a contactless authentication element is desirable. Unfortunately, iCLASS has been shown to have security issues. Nevertheless customers continue to use it because of the great cost that would be required to completely replace it. This Honors Thesis will address attacks against iCLASS and means for countering them that do not require such an overhaul.
ContributorsMellott, Matthew John (Author) / Ahn, Gail-Joon (Thesis director) / Thorstenson, Tina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2014-05
134762-Thumbnail Image.png
Description
IoT Media broadcast devices, such as the Roku stick, Amazon Fire, and Chromecast have been emerging onto the market recently as a portable and inexpensive alternative to cable and disk players, allowing easy integration between home and business Wi-Fi networks and television systems capable of supporting HDMI inputs without the

IoT Media broadcast devices, such as the Roku stick, Amazon Fire, and Chromecast have been emerging onto the market recently as a portable and inexpensive alternative to cable and disk players, allowing easy integration between home and business Wi-Fi networks and television systems capable of supporting HDMI inputs without the additional overhead of setting up a heavy or complicated player or computer. The rapid expansion of these products as a mechanism to provide for TV Everywhere services for entertainment as well as cheap office appliances brings yet another node in the rapidly expanding network of IoT that surrounds us today. However, the security implications of these devices are nearly unexplored, despite their prevalence. In this thesis, I will go over the structure and mechanisms of Chromecast, and explore some of the potential exploits and consequences of the device. The thesis contains an overview of the inner workings of Chromecast, goes over the segregation and limited control and fundamental design choices of the Android based OS. It then identifies the objectives of security, four different potential methods of exploit to compromise those objectives on a Chromecast and/or its attached network, including rogue applications, traffic sniffing, evil access points and the most effective one: deauthentication attack. Tests or relevant analysis were carried out for each of these methods, and conclusions were drawn on their effectiveness. There is then a conclusion revolving around the consequences, mitigation and the future implications of security issues on Chromecast and the larger IoT landscape.
ContributorsHuang, Kaiyi (Author) / Zhao, Ziming (Thesis director) / Ahn, Gail-Joon (Committee member) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
What if unplanned free time could be spent with friends instead of trying to contact them? This app will do that by connecting you with friends who are ready to hang out. Kickback is a mobile app designed to connect individuals with their friends and businesses that offer opportunities to

What if unplanned free time could be spent with friends instead of trying to contact them? This app will do that by connecting you with friends who are ready to hang out. Kickback is a mobile app designed to connect individuals with their friends and businesses that offer opportunities to socialize in a group setting. The idea had been floating around in my head for a few years and this creative project gave me the opportunity to try my hand at making the idea into a reality. This thesis is a combination of technical efforts and business know-how that I had to learn in order to keep up along the way.
ContributorsFegard, Nathan (Author) / Sebold, Brent (Thesis director) / Trujillo, Rhett (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133137-Thumbnail Image.png
Description
Third-party mixers are used to heighten the anonymity of Bitcoin users. The mixing techniques implemented by these tools are often untraceable on the blockchain, making them appealing to money launderers. This research aims to analyze mixers currently available on the deep web. In addition, an in-depth case study is done

Third-party mixers are used to heighten the anonymity of Bitcoin users. The mixing techniques implemented by these tools are often untraceable on the blockchain, making them appealing to money launderers. This research aims to analyze mixers currently available on the deep web. In addition, an in-depth case study is done on an open-source bitcoin mixer known as Penguin Mixer. A local version of Penguin Mixer was used to visualize mixer behavior under specific scenarios. This study could lead to the identification of vulnerabilities in mixing tools and detection of these tools on the blockchain.
ContributorsPakki, Jaswant (Author) / Doupe, Adam (Thesis director) / Shoshitaishvili, Yan (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
133050-Thumbnail Image.png
Description
Despite the more tightly controlled permissions and Java framework used by most programs in the Android operating system, an attacker can use the same classic vulnerabilities that exist for traditional Linux binaries on the programs in the Android operating system. Some classic vulnerabilities include stack overows, string formats, and hea

Despite the more tightly controlled permissions and Java framework used by most programs in the Android operating system, an attacker can use the same classic vulnerabilities that exist for traditional Linux binaries on the programs in the Android operating system. Some classic vulnerabilities include stack overows, string formats, and heap meta-information corruption. Through the exploitation of these vulnerabilities an attacker can hijack the execution ow of an application. After hijacking the execution ow, an attacker can then violate the con_dentiality, integrity, or availability of the operating system. Over the years, the operating systems and compliers have implemented a number of protections to prevent the exploitation of vulnerable programs. The most widely implemented protections include Non-eXecutable stack (NX Stack), Address Space Layout Randomization (ASLR), and Stack Canaries (Canaries). NX Stack protections prevent the injection and execution of arbitrary code through the use of a permissions framework within a program. Whereas, ASLR and Canaries rely on obfuscation techniques to protect control ow, which requires su_cient entropy between each execution. Early in the implementation of these protections in Linux, researchers discovered that without su_cient entropy between executions, ASLR and Canaries were easily bypassed. For example, the obfuscation techniques were useless in programs that ran continuously because the programs did not change the canaries or re-randomize the address space. Similarly, aws in the implementation of ASLR and Canaries in Android only re-randomizes the values after rebooting, which means the address space locations and canary values remain constant across the executions of an Android program. As a result, an attacker can hijack the control ow Android binaries that contain control ow vulnerabilities. The purpose of this paper is to expose these aws and the methodology used to verify their existence in Android versions 4.1 (Jelly Bean) through 8.0 (Oreo).
ContributorsGibbs, Wil (Author) / Doupe, Adam (Thesis director) / Shoshitaishvili, Yan (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2018-12
133484-Thumbnail Image.png
Description
In modern society, computer science (CS) professionals are necessary in the workforce. A growing number of fields and disciplines require the analytical and programming skills that come from a CS education. Despite the growing demand for programmers, the dropout rate within undergraduate CS programs remains high. In an effort to

In modern society, computer science (CS) professionals are necessary in the workforce. A growing number of fields and disciplines require the analytical and programming skills that come from a CS education. Despite the growing demand for programmers, the dropout rate within undergraduate CS programs remains high. In an effort to improve retention and make CS more accessible, I prototyped a mobile application that will help students through the principal deterrents that students face in their undergraduate years. Utilizing survey responses from 51 peers I determined the core courses and concepts within the CS curriculum that provoked the most concern to select the topics covered in the mobile application. The results show that the major barrier courses are CSE 310: Data Structures and Algorithms, CSE 340: Principles of Programming Languages, and CSE 355: Introduction to Theoretical Computer Science. Also using interviews and market research, I went through an iterative design process until I arrived at my final prototype that provides users a visual timeline of their program, examples for each individual topic, the ability to interact with other users, and create quizzes covering content they learned. This prototype is intended to lead to a fully developed application that will prepare and encourage students to further their professional careers in CS.
ContributorsRoldan, Jorge (Author) / Ganesh, Tirupalavanam (Thesis director) / Trowbridge, Amy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133291-Thumbnail Image.png
DescriptionFresh15 is an iOS application geared towards helping college students eat healthier. This is based on a user's preferences of price range, food restrictions, and favorite ingredients. Our application also considers the fact that students may have to order their ingredients online since they don't have access to transportation.
ContributorsBailey, Reece (Co-author) / Fallah-Adl, Sarah (Co-author) / Meuth, Ryan (Thesis director) / McDaniel, Troy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05