Matching Items (231)
Filtering by

Clear all filters

154016-Thumbnail Image.png
Description
Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled

Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled carbon nanotubes (SWNTs) were studied for various applications, including water treatment, energy storage, actuators, and sensors.

A facile spray pyrolysis synthesis technique was developed to synthesize individual CNSs with specific surface area (SSA) up to 1106 m2/g. The hollow CNSs showed adsorption of up to 300 mg rhodamine B dye per gram carbon, which is more than 15 times higher than that observed for conventional carbon black. They were also evaluated as adsorbents for removal of arsenate and selenate from water and displayed good binding to both species, outperforming commercial activated carbons for arsenate removal in pH > 8. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed. When used as Li-ion battery anode materials, the CNSs achieved a discharge capacity of 270 mAh/g at a current density of 372 mA/g (1C), which is 4-fold higher than that of commercial graphite anode.

Carbon foams were synthesized using direct pyrolysis and had SSA up to 2340 m2/g. When used as supercapacitor electrode materials, a specific capacitance up to 280 F/g was achieved at current density of 0.1 A/g and remained as high as 207 F/g, even at a high current density of 10 A/g.

A printed walking robot was made from common plastic films and coatings of SWNTs. The solid-state thermal bimorph actuators were multifunctional energy transducers powered by heat, light, or electricity. The actuators were also investigated for photo/thermal detection. Electrochemical actuators based on MnO2 were also studied for potential underwater applications.

SWNTs were also used to fabricate printable electrodes for trace Cr(VI) detection, which displayed sensitivity up to 500 nA/ppb for Cr(VI). The limit of detection was shown to be as low as 5 ppb. A flow detection system based on CNT/printed electrodes was also demonstrated.
ContributorsWang, Chengwei, Ph.D (Author) / Chan, Candace K. (Thesis advisor) / Tongay, Sefaattin (Committee member) / Wang, Qing Hua (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2015
156076-Thumbnail Image.png
Description
Since the discovery of graphene, two dimensional materials (2D materials) have become a focus of interest for material research due to their many unique physical properties embedded in their 2D structure. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced

Since the discovery of graphene, two dimensional materials (2D materials) have become a focus of interest for material research due to their many unique physical properties embedded in their 2D structure. While they host many exciting potential applications, some of these 2D materials are subject to environmental instability issues induced by interaction between material and gas molecules in air, which poses a barrier to further application and manufacture. To overcome this, it is necessary to understand the origin of material instability and interaction with molecules commonly found in air, as well as developing a reproducible and manufacturing compatible method to post-process these materials to extend their lifetime. In this work, the very first investigation on environmental stability on Te containing anisotropic 2D materials such as GaTe and ZrTe3 is reported. Experimental results have demonstrated that freshly exfoliated GaTe quickly deteriorate in air, during which the Raman spectrum, surface morphology, and surface chemistry undergo drastic changes. Environmental Raman spectroscopy and XPS measurements demonstrate that H2O molecules in air interact strongly on the surface while O2, N2, and inert gases don't show any detrimental effects on GaTe surface. Moreover, the anisotropic properties of GaTe slowly disappear during the aging process. To prevent this gas/material interaction based surface transformation, diazonium based surface functionalization is adopted on these Te based 2D materials. Environmental Raman spectroscopy results demonstrate that the stability of functionalized Te based 2D materials exhibit much higher stability both in ambient and extreme conditions. Meanwhile, PL spectroscopy, angle resolved Raman spectroscopy, atomic force microscopy measurements confirm that many attractive physical properties of the material are not affected by surface functionalization. Overall, these findings unveil the degradation mechanism of Te based 2D materials as well as provide a way to significantly enhance their environmental stability through an inexpensive and reproducible surface chemical functionalization route.
ContributorsYang, Sijie (Author) / Tongay, Sefaattin (Thesis advisor) / Gould, Ian (Thesis advisor) / Trovitch, Ryan (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2017
156608-Thumbnail Image.png
Description
There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in

There has been a surge in two-dimensional (2D) materials field since the discovery of graphene in 2004. Recently, a new class of layered atomically thin materials that exhibit in-plane structural anisotropy, such as black phosphorous, transition metal trichalcogenides and rhenium dichalcogenides (ReS2), have attracted great attention. The reduced symmetry in these novel 2D materials gives rise to highly anisotropic physical properties that enable unique applications in next-gen electronics and optoelectronics. For example, higher carrier mobility along one preferential crystal direction for anisotropic field effect transistors and anisotropic photon absorption for polarization-sensitive photodetectors.

This dissertation endeavors to address two key challenges towards practical application of anisotropic materials. One is the scalable production of high quality 2D anisotropic thin films, and the other is the controllability over anisotropy present in synthesized crystals. The investigation is focused primarily on rhenium disulfide because of its chemical similarity to conventional 2D transition metal dichalcogenides and yet anisotropic nature. Carefully designed vapor phase deposition has been demonstrated effective for batch synthesis of high quality ReS2 monolayer. Heteroepitaxial growth proves to be a feasible route for controlling anisotropic directions. Scanning/transmission electron microscopy and angle-resolved Raman spectroscopy have been extensively applied to reveal the structure-property relationship in synthesized 2D anisotropic layers and their heterostructures.
ContributorsChen, Bin, 1968- (Author) / Tongay, Sefaattin (Thesis advisor) / Bertoni, Mariana (Committee member) / Chang, Lan-Yun (Committee member) / Arizona State University (Publisher)
Created2018
156666-Thumbnail Image.png
Description
Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium

Layer structured two dimensional (2D) semiconductors have gained much interest due to their intriguing optical and electronic properties induced by the unique van der Waals bonding between layers. The extraordinary success for graphene and transition metal dichalcogenides (TMDCs) has triggered a constant search for novel 2D semiconductors beyond them. Gallium chalcogenides, belonging to the group III-VI compounds, are a new class of 2D semiconductors that carry a variety of interesting properties including wide spectrum coverage of their bandgaps and thus are promising candidates for next generation electronic and optoelectronic devices. Pushing these materials toward applications requires more controllable synthesis methods and facile routes for engineering their properties on demand.

In this dissertation, vapor phase transport is used to synthesize layer structured gallium chalcogenide nanomaterials with highly controlled structure, morphology and properties, with particular emphasis on GaSe, GaTe and GaSeTe alloys. Multiple routes are used to manipulate the physical properties of these materials including strain engineering, defect engineering and phase engineering. First, 2D GaSe with controlled morphologies is synthesized on Si(111) substrates and the bandgap is significantly reduced from 2 eV to 1.7 eV due to lateral tensile strain. By applying vertical compressive strain using a diamond anvil cell, the band gap can be further reduced to 1.4 eV. Next, pseudo-1D GaTe nanomaterials with a monoclinic structure are synthesized on various substrates. The product exhibits highly anisotropic atomic structure and properties characterized by high-resolution transmission electron microscopy and angle resolved Raman and photoluminescence (PL) spectroscopy. Multiple sharp PL emissions below the bandgap are found due to defects localized at the edges and grain boundaries. Finally, layer structured GaSe1-xTex alloys across the full composition range are synthesized on GaAs(111) substrates. Results show that GaAs(111) substrate plays an essential role in stabilizing the metastable single-phase alloys within the miscibility gaps. A hexagonal to monoclinic phase crossover is observed as the Te content increases. The phase crossover features coexistence of both phases and isotropic to anisotropic structural transition.

Overall, this work provides insights into the controlled synthesis of gallium chalcogenides and opens up new opportunities towards optoelectronic applications that require tunable material properties.
ContributorsCai, Hui, Ph.D (Author) / Tongay, Sefaattin (Thesis advisor) / Dwyer, Christian (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
131502-Thumbnail Image.png
Description
Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students

Social-emotional learning (SEL) methods are beginning to receive global attention in primary school education, yet the dominant emphasis on implementing these curricula is in high-income, urbanized areas. Consequently, the unique features of developing and integrating such methods in middle- or low-income rural areas are unclear. Past studies suggest that students exposed to SEL programs show an increase in academic performance, improved ability to cope with stress, and better attitudes about themselves, others, and school, but these curricula are designed with an urban focus. The purpose of this study was to conduct a needs-based analysis to investigate components specific to a SEL curriculum contextualized to rural primary schools. A promising organization committed to rural educational development is Barefoot College, located in Tilonia, Rajasthan, India. In partnership with Barefoot, we designed an ethnographic study to identify and describe what teachers and school leaders consider the highest needs related to their students' social and emotional education. To do so, we interviewed 14 teachers and school leaders individually or in a focus group to explore their present understanding of “social-emotional learning” and the perception of their students’ social and emotional intelligence. Analysis of this data uncovered common themes among classroom behaviors and prevalent opportunities to address social and emotional well-being among students. These themes translated into the three overarching topics and eight sub-topics explored throughout the curriculum, and these opportunities guided the creation of the 21 modules within it. Through a design-based research methodology, we developed a 40-hour curriculum by implementing its various modules within seven Barefoot classrooms alongside continuous reiteration based on teacher feedback and participant observation. Through this process, we found that student engagement increased during contextualized SEL lessons as opposed to traditional methods. In addition, we found that teachers and students preferred and performed better with an activities-based approach. These findings suggest that rural educators must employ particular teaching strategies when addressing SEL, including localized content and an experiential-learning approach. Teachers reported that as their approach to SEL shifted, they began to unlock the potential to build self-aware, globally-minded students. This study concludes that social and emotional education cannot be treated in a generalized manner, as curriculum development is central to the teaching-learning process.
ContributorsBucker, Delaney Sue (Author) / Carrese, Susan (Thesis director) / Barab, Sasha (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Civic & Economic Thought and Leadership (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135204-Thumbnail Image.png
Description
The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed

The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed by ASU with <100 nVp-p noise, <10 nV offsets, 10 pV to 16 mV voltage range, and negligible thermoelectric drift. There is currently no other research group or company that can currently match both these low noise levels and wide voltage range. Two different dipping probes can be created with these specifications: one for high-use applications and one for low-use applications. The only difference between these probes is the outer shell; the high-use application probe has a shell made of G-10 fiberglass for a higher price, and the low-use application probe has a shell made of AISI 310 steel for a lower price. Both types of probes can be assembled in less than 8 hours for less than $2,500, requiring only soldering expertise. The low cost and short time to create these probes makes wide profit margins possible. The market for these cryogenic dipping probes is currently untapped, as most research groups and companies that use these probes build their own, which allows for rapid business growth. These potential consumers can be easily reached by marketing these probes at superconducting conferences. After several years of selling >50 probes, mass production can easily become possible by hiring several technicians, and still maintaining wide profit margins.
ContributorsHudson, Brooke Ashley (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135352-Thumbnail Image.png
Description
The goal of our study is to identify socio-economic risk factors for depressive disorder and poor mental health by statistically analyzing survey data from the CDC. The identification of risk groups in a particular demographic could aid in the development of targeted interventions to improve overall quality of mental health

The goal of our study is to identify socio-economic risk factors for depressive disorder and poor mental health by statistically analyzing survey data from the CDC. The identification of risk groups in a particular demographic could aid in the development of targeted interventions to improve overall quality of mental health in the United States. In our analysis, we studied the influences and correlations of socioeconomic factors that regulate the risk of developing Depressive Disorders and overall poor mental health. Using the statistical software STATA, we ran a regression model of selected independent socio-economic variables with the dependent mental health variables. The independent variables of the statistical model include Income, Race, State, Age, Marital Status, Sex, Education, BMI, Smoker Status, and Alcohol Consumption. Once the regression coefficients were found, we illustrated the data in graphs and heat maps to qualitatively provide visuals of the prevalence of depression in the U.S. demography. Our study indicates that the low-income and under-educated populations who are everyday smokers, obese, and/or are in divorced or separated relationships should be of main concern. A suggestion for mental health organizations would be to support counseling and therapeutic efforts as secondary care for those in smoking cessation programs, weight management programs, marriage counseling, or divorce assistance group. General improvement in alleviating poverty and increasing education could additionally show progress in counter-acting the prevalence of depressive disorder and also improve overall mental health. The identification of these target groups and socio-economic risk factors are critical in developing future preventative measures.
ContributorsGrassel, Samuel (Co-author) / Choueiri, Alexi (Co-author) / Choueiri, Robert (Co-author) / Goegan, Brian (Thesis director) / Holter, Michael (Committee member) / Sandra Day O'Connor College of Law (Contributor) / School of Molecular Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
This thesis examines youth with mental health disorders in the juvenile justice system, and when their stories intersect with media coverage. In addition to exploring the history of juvenile justice in the United States, it reviews the relationship with youths who have a mental health disorder within the system, criticism

This thesis examines youth with mental health disorders in the juvenile justice system, and when their stories intersect with media coverage. In addition to exploring the history of juvenile justice in the United States, it reviews the relationship with youths who have a mental health disorder within the system, criticism of media’s coverage on these topics, and expert opinion on how this can be improved. Typically, both print and broadcast media have utilized these stories for sensationalism: slapping these crimes across the front page of the paper, or leading in a broadcast news show. Yet the journalistic responsibility of educating the community is tragically over looked, with these stories adding to the stigma of mental health. With this research, I aim to gather insight on how word choices, details, and story structure can improve daily reporting in a world of tight deadlines and competing interests—moving into a higher-quality news product.
Created2016-05
135447-Thumbnail Image.png
Description
This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and

This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and their experiences within the healthcare system in the context of their sexual orientation. The data collected from these interviews was used to create an analysis of the healthcare experiences of those who identify as queer. Although the original intention of the project was to chronicle the experiences of LGB women specifically, there were four non-binary gender respondents who contributed interviews. In an effort to not privilege any orientation over another, the respondents were collectively referred to as queer, given the inclusive and an encompassing nature of the term. The general conclusion of this study is that respondents most often experienced heterosexism rather than outright homophobia when accessing healthcare. If heterosexism was present within the healthcare setting, it made respondents feel uncomfortable with their providers and less likely to inform them of their sexuality even if it was medically relevant to their health outcomes. Gender, race, and,socioeconomic differences also had an effect on the patient-provider relationship. Non-binary respondents acknowledged the need for inclusion of more gender options outside of male or female on the reporting forms often seen in medical offices. By doing so, medical professionals are acknowledging their awareness and knowledge of people outside of the binary gender system, thus improving the experience of these patients. While race and socioeconomic status were less relevant to the context of this study, it was found that these factors have an affect on the patient-provider relationship. There are many suggestions for providers to improve the experiences of queer patients within the healthcare setting. This includes nonverbal indications of acknowledgement and acceptance, such as signs in the office that indicate it to be a queer friendly space. This will help in eliminating the fear and miscommunication that can often happen when a queer patient sees a practitioner for the first time. In addition, better education on medically relevant topics to queer patients, is necessary in order to eliminate disparities in health outcomes. This is particularly evident in trans health, where specialized education is necessary in order to decrease poor health outcomes in trans patients. Future directions of this study necessitate a closer look on how race and socioeconomic status have an effect on a queer patient's relationship with their provider.
Created2016-05
135674-Thumbnail Image.png
Description
Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in mental health in older adults with DS as measured from the Adapted Behavior Dementia Questionnaire (ABDQ), Physical Activity Self Efficacy

Previous research has found improvements in motor and cognitive measures following Assisted Cycle Therapy (AC) in adolescence with Down syndrome (DS). Our study investigated whether we would find improvements in mental health in older adults with DS as measured from the Adapted Behavior Dementia Questionnaire (ABDQ), Physical Activity Self Efficacy Scales (PACES), Children's Depressive inventory, which are early indicators of Alzheimer's disease (AD) in persons with Down syndrome. This study consisted of seven participants with Down syndrome between the ages of 31 and 54, inclusive, that cycled for 30 minutes 3 x/week for eight weeks either at their voluntary cycling rate (VC) or approximately 35% faster with the help of a mechanical motor (ACT). Our results were consistent with our prediction that self efficacy improved following ACT, but not VC. However, our results were not consistent with our prediction that dementia and depression were improved following ACT more than VC. These results were interpreted with respect to the effects of exercise in older adults with DS. Future research should focus on recruiting more participants, especially those with deficits in mental health.
ContributorsPandya, Sachin (Author) / Ringenbach, Shannon (Thesis director) / Coon, David (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05