Matching Items (293)
Filtering by

Clear all filters

147844-Thumbnail Image.png
Description

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded the alarm regarding social media’s unavoidable global impact. He is only one of social media’s countless critics. The more disturbing issue resides in the empirical evidence supporting such notions. At least 95% of adolescents own a smartphone and spend an average time of two to four hours a day on social media. Moreover, 91% of 16-24-year-olds use social media, yet youth rate Instagram, Facebook, and Twitter as the worst social media platforms. However, the social, clinical, and neurodevelopment ramifications of using social media regularly are only beginning to emerge in research. Early research findings show that social media platforms trigger anxiety, depression, low self-esteem, and other negative mental health effects. These negative mental health symptoms are commonly reported by individuals from of 18-25-years old, a unique period of human development known as emerging adulthood. Although emerging adulthood is characterized by identity exploration, unbounded optimism, and freedom from most responsibilities, it also serves as a high-risk period for the onset of most psychological disorders. Despite social media’s adverse impacts, it retains its utility as it facilitates identity exploration and virtual socialization for emerging adults. Investigating the “user-centered” design and neuroscience underlying social media platforms can help reveal, and potentially mitigate, the onset of negative mental health consequences among emerging adults. Effectively deconstructing the Facebook, Twitter, and Instagram (i.e., hereafter referred to as “The Big Three”) will require an extensive analysis into common features across platforms. A few examples of these design features include: like and reaction counters, perpetual news feeds, and omnipresent banners and notifications surrounding the user’s viewport. Such social media features are inherently designed to stimulate specific neurotransmitters and hormones such as dopamine, serotonin, and cortisol. Identifying such predacious social media features that unknowingly manipulate and highjack emerging adults’ brain chemistry will serve as a first step in mitigating the negative mental health effects of today’s social media platforms. A second concrete step will involve altering or eliminating said features by creating a social media platform that supports and even enhances mental well-being.

ContributorsGupta, Anay (Author) / Flores, Valerie (Thesis director) / Carrasquilla, Christina (Committee member) / Barnett, Jessica (Committee member) / The Sidney Poitier New American Film School (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148013-Thumbnail Image.png
Description

In this thesis paper, the mental health consequences of the COVID-19 pandemic are discussed. Chapter 1 discusses what inspired me to write this thesis and follows with a discussion of social isolation during the COVID-19 pandemic. Chapter 2 takes a step back and discusses biological effects of social isolation

In this thesis paper, the mental health consequences of the COVID-19 pandemic are discussed. Chapter 1 discusses what inspired me to write this thesis and follows with a discussion of social isolation during the COVID-19 pandemic. Chapter 2 takes a step back and discusses biological effects of social isolation in general. Chapter 3 discusses the psychological effects of social isolation. Finally, this thesis concludes with a discussion of what can be done to help those experiencing social isolation during the pandemic.

ContributorsHarvey, Kira Rachelle (Author) / Sturgess, Jessica (Thesis director) / Tucker, Derek (Committee member) / School of Music, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148014-Thumbnail Image.png
Description

My research aims to determine the effectiveness of meditation and sleep applications (apps) on the reduction of anxiety and stress in college students, with a focus on sedative piano music. Results showed a significant reduction of stress and anxiety levels in college students when listening to sedative piano music versus

My research aims to determine the effectiveness of meditation and sleep applications (apps) on the reduction of anxiety and stress in college students, with a focus on sedative piano music. Results showed a significant reduction of stress and anxiety levels in college students when listening to sedative piano music versus non-sedative piano music. Music along with other therapy modalities in meditation and sleep apps show promise in reducing students’ anxiety and stress and promoting their successes.

ContributorsPantha, Bidur (Author) / Brian, Jennifer (Thesis director) / Patten, Kristopher (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147992-Thumbnail Image.png
Description

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario.

The research presented in this Honors Thesis provides development in machine learning models which predict future states of a system with unknown dynamics, based on observations of the system. Two case studies are presented for (1) a non-conservative pendulum and (2) a differential game dictating a two-car uncontrolled intersection scenario. In the paper we investigate how learning architectures can be manipulated for problem specific geometry. The result of this research provides that these problem specific models are valuable for accurate learning and predicting the dynamics of physics systems.<br/><br/>In order to properly model the physics of a real pendulum, modifications were made to a prior architecture which was sufficient in modeling an ideal pendulum. The necessary modifications to the previous network [13] were problem specific and not transferrable to all other non-conservative physics scenarios. The modified architecture successfully models real pendulum dynamics. This case study provides a basis for future research in augmenting the symplectic gradient of a Hamiltonian energy function to provide a generalized, non-conservative physics model.<br/><br/>A problem specific architecture was also utilized to create an accurate model for the two-car intersection case. The Costate Network proved to be an improvement from the previously used Value Network [17]. Note that this comparison is applied lightly due to slight implementation differences. The development of the Costate Network provides a basis for using characteristics to decompose functions and create a simplified learning problem.<br/><br/>This paper is successful in creating new opportunities to develop physics models, in which the sample cases should be used as a guide for modeling other real and pseudo physics. Although the focused models in this paper are not generalizable, it is important to note that these cases provide direction for future research.

ContributorsMerry, Tanner (Author) / Ren, Yi (Thesis director) / Zhang, Wenlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse

Robots are often used in long-duration scenarios, such as on the surface of Mars,where they may need to adapt to environmental changes. Typically, robots have been built specifically for single tasks, such as moving boxes in a warehouse or surveying construction sites. However, there is a modern trend away from human hand-engineering and toward robot learning. To this end, the ideal robot is not engineered,but automatically designed for a specific task. This thesis focuses on robots which learn path-planning algorithms for specific environments. Learning is accomplished via genetic programming. Path-planners are represented as Python code, which is optimized via Pareto evolution. These planners are encouraged to explore curiously and efficiently. This research asks the questions: “How can robots exhibit life-long learning where they adapt to changing environments in a robust way?”, and “How can robots learn to be curious?”.

ContributorsSaldyt, Lucas P (Author) / Ben Amor, Heni (Thesis director) / Pavlic, Theodore (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148088-Thumbnail Image.png
Description

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions

Colorimetric assays are an important tool in point-of-care testing that offers several advantages to traditional testing methods such as rapid response times and inexpensive costs. A factor that currently limits the portability and accessibility of these assays are methods that can objectively determine the results of these assays. Current solutions consist of creating a test reader that standardizes the conditions the strip is under before being measured in some way. However, this increases the cost and decreases the portability of these assays. The focus of this study is to create a machine learning algorithm that can objectively determine results of colorimetric assays under varying conditions. To ensure the flexibility of a model to several types of colorimetric assays, three models were trained on the same convolutional neural network with different datasets. The images these models are trained on consist of positive and negative images of ETG, fentanyl, and HPV Antibodies test strips taken under different lighting and background conditions. A fourth model is trained on an image set composed of all three strip types. The results from these models show it is able to predict positive and negative results to a high level of accuracy.

ContributorsFisher, Rachel (Author) / Blain Christen, Jennifer (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147887-Thumbnail Image.png
Description

For my thesis/creative project, I created a prototype for a mental health app. Each section of the prototype has a purpose of instilling mindfulness and healthy habits that can promote and lead to sustainable mental health. Throughout the paper I explain my reasoning for starting this project, the science of

For my thesis/creative project, I created a prototype for a mental health app. Each section of the prototype has a purpose of instilling mindfulness and healthy habits that can promote and lead to sustainable mental health. Throughout the paper I explain my reasoning for starting this project, the science of mindfulness and how it can bring about positive mental and physical changes, and the design theory behind the prototype.

ContributorsZaja, Peter (Author) / Sopha, Matthew (Thesis director) / Arrfelt, Mathias (Committee member) / Department of Finance (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

COVID-19 has shocked the bedrock of society, impacting both human life and the economy. Accompanying this shock has been the psychological distress inflicted onto the general population as a result of the emotion strain stemming from isolation/quarantine policies, being sick with COVID-19, dealing with COVID-19 losses, and post-COVID syndrome and

COVID-19 has shocked the bedrock of society, impacting both human life and the economy. Accompanying this shock has been the psychological distress inflicted onto the general population as a result of the emotion strain stemming from isolation/quarantine policies, being sick with COVID-19, dealing with COVID-19 losses, and post-COVID syndrome and its effect on quality of life. The psychological distress has been experienced by the general population, but compared to middle age (30-50) and older adults (>50 years of age), it has been young adults (18-30 years old) who have been more psychologically affected (Glowacz & Schmits, 2020). Psychological distress, specifically anxiety and depression, has been exacerbated by feelings of uncertainty, fear of illness, losing loved ones, and fear of post-COVID syndrome. Post-COVID syndrome, as with other post-viral syndromes such as post viral SARS involve lingering symptoms such as myalgic encephalomyelitis or Chronic Fatigue Syndrome (CFS), and loss of motivation (Underhill, 2015). In addition to these symptoms, patients suffering from post-COVID syndrome have also presented brain inflammation and damaged brain blood vessels (Meinhardt et al., 2021), Endotheliitis (Varga et al., 2020), CV abnormalities and changes in glucose metabolism (Williams et al., 2020). CV abnormalities and changes in glucose metabolism are connected to chronic illnesses like diabetes and heart disease respectively. These chronic illnesses are then associated with higher risk for depression as a result of the stress induced by the symptoms and their impact on quality of life (NIMH, 2021). Further monitoring, and research will be important to gauge ultimate physiological and psychological impact of COVID-19.

ContributorsPiedra Gonzalez, Michael (Author) / Vargas, Perla (Thesis director) / Oh, Hyunsung (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

We think about hope every day, even if we do not consciously think about it. It is an important part of our lives. It affects our subjective well-being and physical health. Yet, many people do not know the importance of hope and how it can be created within one's self.

We think about hope every day, even if we do not consciously think about it. It is an important part of our lives. It affects our subjective well-being and physical health. Yet, many people do not know the importance of hope and how it can be created within one's self. A workshop was designed to increase the knowledge of hope, primarily for college students. The workshop focused on defining hope, explaining how hope plays a part in a healthy lifestyle, and how to create hope for themselves. This project looked at the Hope Theory, discovered by Charles Snyder, and how it can be measured hope through goal attainment<br/>onattainment.

ContributorsLugo, Kaeli Ann (Author) / Hrncir, Micki (Thesis director) / Sidman, Cara (Committee member) / College of Health Solutions (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05