Matching Items (27)
Filtering by

Clear all filters

152021-Thumbnail Image.png
Description
Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature

Metal hydride materials have been intensively studied for hydrogen storage applications. In addition to potential hydrogen economy applications, metal hydrides offer a wide variety of other interesting properties. For example, hydrogen-dominant materials, which are hydrides with the highest hydrogen content for a particular metal/semimetal composition, are predicted to display high-temperature superconductivity. On the other side of the spectrum are hydrides with small amounts of hydrogen (0.1 - 1 at.%) that are investigated as viable magnetic, thermoelectric or semiconducting materials. Research of metal hydride materials is generally important to gain fundamental understanding of metal-hydrogen interactions in materials. Hydrogenation of Zintl phases, which are defined as compounds between an active metal (alkali, alkaline earth, rare earth) and a p-block metal/semimetal, were attempted by a hot sintering method utilizing an autoclave loaded with gaseous hydrogen (< 9 MPa). Hydride formation competes with oxidative decomposition of a Zintl phase. The oxidative decomposition, which leads to a mixture of binary active metal hydride and p-block element, was observed for investigated aluminum (Al) and gallium (Ga) containing Zintl phases. However, a new phase Li2Al was discovered when Zintl phase precursors were synthesized. Using the single crystal x-ray diffraction (SCXRD), the Li2Al was found to crystallize in an orthorhombic unit cell (Cmcm) with the lattice parameters a = 4.6404(8) Å, b = 9.719(2) Å, and c = 4.4764(8) Å. Increased demand for materials with improved properties necessitates the exploration of alternative synthesis methods. Conventional metal hydride synthesis methods, like ball-milling and autoclave technique, are not responding to the demands of finding new materials. A viable alternative synthesis method is the application of high pressure for the preparation of hydrogen-dominant materials. Extreme pressures in the gigapascal ranges can open access to new metal hydrides with novel structures and properties, because of the drastically increased chemical potential of hydrogen. Pressures up to 10 GPa can be easily achieved using the multi-anvil (MA) hydrogenations while maintaining sufficient sample volume for structure and property characterization. Gigapascal MA hydrogenations using ammonia borane (BH3NH3) as an internal hydrogen source were employed in the search for new hydrogen-dominant materials. Ammonia borane has high gravimetric volume of hydrogen, and additionally the thermally activated decomposition at high pressures lead to a complete hydrogen release at reasonably low temperature. These properties make ammonia borane a desired hydrogen source material. The missing member Li2PtH6 of the series of A2PtH6 compounds (A = Na to Cs) was accessed by employing MA technique. As the known heavier analogs, the Li2PtH6 also crystallizes in a cubic K2PtCl6-type structure with a cell edge length of 6.7681(3) Å. Further gigapascal hydrogenations afforded the compounds K2SiH6 and Rb2SiH6 which are isostructural to Li2PtH6. The cubic K2SiH6 and Rb2SiH6 are built from unique hypervalent SiH62- entities with the lattice parameters of 7.8425(9) and 8.1572(4) Å, respectively. Spectroscopic analysis of hexasilicides confirmed the presence of hypervalent bonding. The Si-H stretching frequencies at 1550 cm-1 appeared considerably decreased in comparison with a normal-valent (2e2c) Si-H stretching frequencies in SiH4 at around 2200 cm-1. However, the observed stretching modes in hypervalent hexasilicides were in a reasonable agreement with Ph3SiH2- (1520 cm-1) where the hydrogen has the axial (3e4c bonded) position in the trigoal bipyramidal environment.
ContributorsPuhakainen, Kati (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Thesis advisor) / Kouvetakis, John (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2013
151946-Thumbnail Image.png
Description
This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The

This thesis studies three different types of anhydrous proton conducting electrolytes for use in fuel cells. The proton energy level scheme is used to make the first electrolyte which is a rubbery polymer in which the conductivity reaches values typical of activated Nafion, even though it is completely anhydrous. The protons are introduced into a cross-linked polyphospazene rubber by the superacid HOTf, which is absorbed by partial protonation of the backbone nitrogens. The decoupling of conductivity from segmental relaxation times assessed by comparison with conductivity relaxation times amounts to some 10 orders of magnitude, but it cannot be concluded whether it is purely protonic or due equally to a mobile OTf- or H(OTf)2-; component. The second electrolyte is built on the success of phosphoric acid as a fuel cell electrolyte, by designing a variant of the molecular acid that has increased temperature range without sacrifice of high temperature conductivity or open circuit voltage. The success is achieved by introduction of a hybrid component, based on silicon coordination of phosphate groups, which prevents decomposition or water loss to 250ºC, while enhancing free proton motion. Conductivity studies are reported to 285ºC and full H2/O2 cell polarization curves to 226ºC. The current efficiency reported here (current density per unit of fuel supplied per sec) is the highest on record. A power density of 184 (mW.cm-2) is achieved at 226ºC with hydrogen flow rate of 4.1 ml/minute. The third electrolyte is a novel type of ionic liquids which is made by addition of a super strong Brønsted acid to a super weak Brønsted base. Here it is shown that by allowing the proton of transient HAlCl4, to relocate on a very weak base that is also stable to superacids, we can create an anhydrous ionic liquid, itself a superacid, in which the proton is so loosely bound that at least 50% of the electrical conductivity is due to the motion of free protons. The protic ionic liquids (PILs) described, pentafluoropyridinium tetrachloroaluminate and 5-chloro-2,4,6-trifluoropyrimidinium tetrachloroaluminate, might be the forerunner of a class of materials in which the proton plasma state can be approached.
ContributorsAnsari, Younes (Author) / Angell, Charles A (Thesis advisor) / Richert, Ranko (Committee member) / Chizmeshya, Andrew (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2013
150627-Thumbnail Image.png
Description
The behaviors of various amorphous materials are characterized at high pressures to deduce phase transitions, coordination changes, densification, and other structural or electronic alterations in the system. Alongside, improvements on high pressure techniques are presented to measure equations of state of glassy materials and probe liquids using in-situ high resolution

The behaviors of various amorphous materials are characterized at high pressures to deduce phase transitions, coordination changes, densification, and other structural or electronic alterations in the system. Alongside, improvements on high pressure techniques are presented to measure equations of state of glassy materials and probe liquids using in-situ high resolution nuclear magnetic resonance (NMR) spectroscopy. 27Al NMR is used to quantify coordination changes in CaAl2O4 glass pressure cycled to 16 GPa. The structure and coordination environments remain unchanged up to 8 GPa at which 93% of the recovered glass exists as 4-fold Al, whereas the remaining population exists as [5,6]Al. Upon densification, [5,6]Al comprise nearly 30% of observed Al, most likely through the generation of 3-coordinated oxygen. A method to determine the volumetric equation of state of amorphous solids using optical microscopy in a diamond anvil cell is also described. The method relies on two dimensional image acquisition and analysis to quantify changes in the projected image area with compression. The area analysis method is used to determine the compression of cubic crystals, yielding results in good agreement with diffraction and volumetric measurements. A NMR probe capable of reaching 3 GPa is built to understand the nature of magnetic field gradients and improve upon the resolution of high pressure studies conducted in a diamond anvil cell. Field gradients in strength up to 6 G/cm are caused largely by mismatches in the magnetic susceptibility between the sample and gasket, which is proven to shift the chemical shift distribution by use of several different metallic gaskets. Polyamorphic behavior in triphenyl phosphite is studied at pressures up to 0.7 GPa to elucidate the formation of the glacial phase at high pressures. A perceived liquid-liquid phase transition is shown to follow a positive Clapeyron slope, and closely follows the predicted glass transition line up to 0.4 GPa and temperatures below 270 K. A drastic change in morphology is indicative of a transformation from liquid I to liquid II and followed by optical microscopy.
ContributorsAmin, Samrat A (Author) / Yarger, Jeffery L (Thesis advisor) / Wolf, George (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2012
151208-Thumbnail Image.png
Description
Carbon lacks an extended polyanionic chemistry which appears restricted to carbides with C4-, C22-, and C34- moieties. The most common dimeric anion of carbon atoms is C22- with a triple bond between the two carbon atoms. Compounds containing the dicarbide anion can be regarded as salts of acetylene C2H2 (ethyne)

Carbon lacks an extended polyanionic chemistry which appears restricted to carbides with C4-, C22-, and C34- moieties. The most common dimeric anion of carbon atoms is C22- with a triple bond between the two carbon atoms. Compounds containing the dicarbide anion can be regarded as salts of acetylene C2H2 (ethyne) and hence are also called acetylides or ethynides. Inspired by the fact that molecular acetylene undergoes pressure induced polymerization to polyacetylene above 3.5 GPa, it is of particular interest to study the effect of pressure on the crystal structures of acetylides as well. In this work, pressure induced polymerization was attempted with two simple metal acetylides, Li2C2 and CaC2. Li2C2 and CaC2 have been synthesized by a direct reaction of the elements at 800ºC and 1200ºC, respectively. Initial high pressure investigations were performed inside Diamond anvil cell (DAC) at room temperature and in situ Raman spectroscopic measurement were carried out up to 30 GPa. Near 15 GPa, Li2C2 undergoes a transition into a high pressure acetylide phase and around 25 GPa this phase turns amorphous. CaC2 is polymorphic at ambient pressure. Monoclinic CaC2-II does not show stability at pressures above 1 GPa. Tetragonal CaC2-I is stable up to at least 12 GPa above which possibly a pressure-induced distortion occurs. At around 18 GPa, CaC2 turns amorphous. In a subsequent series of experiments both Li2C2 and CaC2 were compressed to 10 GPa in a multi anvil (MA) device and heated to temperatures between 300 and 1100oC for Li2C2, and 300°C to 900°C for CaC2. The recovered products were analyzed by PXRD and Raman spectroscopy. It has been observed that reactions at temperature higher than 900°C were very difficult to control and hitherto only short reaction times could be applied. For Li2C2, a new phase, free of starting material was found at 1100°C. Both the PXRD patterns and Raman spectra of products at 1100oC could not be matched to known forms of carbon or carbides. For CaC2 new reflections in PXRD were visible at 900ºC with the starting material phase.
ContributorsKonar, Sumit (Author) / Häussermann, Ulrich (Thesis advisor) / Seo, Dong (Thesis advisor) / Steimle, Timothy (Committee member) / Wolf, George (Committee member) / Arizona State University (Publisher)
Created2012
135352-Thumbnail Image.png
Description
The goal of our study is to identify socio-economic risk factors for depressive disorder and poor mental health by statistically analyzing survey data from the CDC. The identification of risk groups in a particular demographic could aid in the development of targeted interventions to improve overall quality of mental health

The goal of our study is to identify socio-economic risk factors for depressive disorder and poor mental health by statistically analyzing survey data from the CDC. The identification of risk groups in a particular demographic could aid in the development of targeted interventions to improve overall quality of mental health in the United States. In our analysis, we studied the influences and correlations of socioeconomic factors that regulate the risk of developing Depressive Disorders and overall poor mental health. Using the statistical software STATA, we ran a regression model of selected independent socio-economic variables with the dependent mental health variables. The independent variables of the statistical model include Income, Race, State, Age, Marital Status, Sex, Education, BMI, Smoker Status, and Alcohol Consumption. Once the regression coefficients were found, we illustrated the data in graphs and heat maps to qualitatively provide visuals of the prevalence of depression in the U.S. demography. Our study indicates that the low-income and under-educated populations who are everyday smokers, obese, and/or are in divorced or separated relationships should be of main concern. A suggestion for mental health organizations would be to support counseling and therapeutic efforts as secondary care for those in smoking cessation programs, weight management programs, marriage counseling, or divorce assistance group. General improvement in alleviating poverty and increasing education could additionally show progress in counter-acting the prevalence of depressive disorder and also improve overall mental health. The identification of these target groups and socio-economic risk factors are critical in developing future preventative measures.
ContributorsGrassel, Samuel (Co-author) / Choueiri, Alexi (Co-author) / Choueiri, Robert (Co-author) / Goegan, Brian (Thesis director) / Holter, Michael (Committee member) / Sandra Day O'Connor College of Law (Contributor) / School of Molecular Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135431-Thumbnail Image.png
Description
The free-base tetra-tolyl-porphyrin and the corresponding cobalt and iron porphyrin complexes were synthesized and characterized to show that this class of compound can be promising, tunable catalysts for carbon dioxide reduction. During cyclic voltammetry experiments, the iron porphyrin showed an on-set of ‘catalytic current’ at an earlier potential than the

The free-base tetra-tolyl-porphyrin and the corresponding cobalt and iron porphyrin complexes were synthesized and characterized to show that this class of compound can be promising, tunable catalysts for carbon dioxide reduction. During cyclic voltammetry experiments, the iron porphyrin showed an on-set of ‘catalytic current’ at an earlier potential than the cobalt porphyrin’s in organic solutions gassed with carbon dioxide. The cobalt porphyrin yielded larger catalytic currents, but at the same potential as the electrode. This difference, along with the significant changes in the porphyrin’s electronic, optical and redox properties, showed that its capabilities for carbon dioxide reduction can be controlled by metal ions, allotting it unique opportunities for applications in solar fuels catalysis and photochemical reactions.
ContributorsSkibo, Edward Kim (Author) / Moore, Gary (Thesis director) / Woodbury, Neal (Committee member) / School of Molecular Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135447-Thumbnail Image.png
Description
This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and

This study investigates how the patient-provider relationship between lesbian, gay, and bisexual women and their healthcare providers influences their access to, utilization of, and experiences within healthcare environments. Nineteen participants, ages 18 to 34, were recruited using convenience and snowball sampling. Interviews were conducted inquiring about their health history and their experiences within the healthcare system in the context of their sexual orientation. The data collected from these interviews was used to create an analysis of the healthcare experiences of those who identify as queer. Although the original intention of the project was to chronicle the experiences of LGB women specifically, there were four non-binary gender respondents who contributed interviews. In an effort to not privilege any orientation over another, the respondents were collectively referred to as queer, given the inclusive and an encompassing nature of the term. The general conclusion of this study is that respondents most often experienced heterosexism rather than outright homophobia when accessing healthcare. If heterosexism was present within the healthcare setting, it made respondents feel uncomfortable with their providers and less likely to inform them of their sexuality even if it was medically relevant to their health outcomes. Gender, race, and,socioeconomic differences also had an effect on the patient-provider relationship. Non-binary respondents acknowledged the need for inclusion of more gender options outside of male or female on the reporting forms often seen in medical offices. By doing so, medical professionals are acknowledging their awareness and knowledge of people outside of the binary gender system, thus improving the experience of these patients. While race and socioeconomic status were less relevant to the context of this study, it was found that these factors have an affect on the patient-provider relationship. There are many suggestions for providers to improve the experiences of queer patients within the healthcare setting. This includes nonverbal indications of acknowledgement and acceptance, such as signs in the office that indicate it to be a queer friendly space. This will help in eliminating the fear and miscommunication that can often happen when a queer patient sees a practitioner for the first time. In addition, better education on medically relevant topics to queer patients, is necessary in order to eliminate disparities in health outcomes. This is particularly evident in trans health, where specialized education is necessary in order to decrease poor health outcomes in trans patients. Future directions of this study necessitate a closer look on how race and socioeconomic status have an effect on a queer patient's relationship with their provider.
Created2016-05
132828-Thumbnail Image.png
Description
Home Base Initiative is a student-led venture project co-founded by Madison Sutton and Sonia Sabrowsky in January 2018. As an organization, Home Base Initiative addresses the problem of teen suicide by educating parents, teachers, and students about the research-backed mental health resources currently available to them and by implementing peer-based

Home Base Initiative is a student-led venture project co-founded by Madison Sutton and Sonia Sabrowsky in January 2018. As an organization, Home Base Initiative addresses the problem of teen suicide by educating parents, teachers, and students about the research-backed mental health resources currently available to them and by implementing peer-based support programs in local high schools. With the belief that positive mental health habits are for everyone, not just individuals with a clinical diagnosis, Home Base Initiative aims to encourage positive conversations about mental health and to increase social and emotional resilience among adolescents to help them navigate the challenges in their lives. In addition to identifying the community problem our organization aims to solve, this document outlines the initial conception, development, and future outlook Home Base Initiative by describing the methods by which the organization has researched other like-minded programs, formed strategic partnerships with community members, piloted its peer-based program at a local high school, and established a foundation for future success as a student organization at Arizona State University. Currently, the Home Base Initiative team consists of 10 undergraduate students at ASU with diverse backgrounds and academic interests as well as credible mentors who are involved in the ASU Tillman Scholars Program, ASU Counseling Services, and The Courage Lab at ASU. We are united by our passion for supporting others’ mental health, and we are dedicated to playing an active role in the healthy development of our fellow community members through mental health advocacy and the facilitation of positive peer-to-peer interactions.
ContributorsSabrowsky, Sonia (Co-author, Co-author) / Sutton, Madison (Co-author) / Mokwa, Michael (Thesis director) / Eaton, John (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133583-Thumbnail Image.png
Description
Iron (Fe) scarcity limits biological productivity in high-nutrient low-chlorophyll (HNLC) ocean regions. Thus, the input, output and abundance of Fe in seawater likely played a critical role in shaping the development of modern marine ecosystems and perhaps even contributed to past changes in Earth’s climate. Three sources of Fe—wind-blown dust,

Iron (Fe) scarcity limits biological productivity in high-nutrient low-chlorophyll (HNLC) ocean regions. Thus, the input, output and abundance of Fe in seawater likely played a critical role in shaping the development of modern marine ecosystems and perhaps even contributed to past changes in Earth’s climate. Three sources of Fe—wind-blown dust, hydrothermal activity, and sediment dissolution—carry distinct Fe isotopic fingerprints, and can therefore be used to track Fe source variability through time. However, establishing the timing of this source variability through Earth’s history remains challenging because the major depocenters for dissolved Fe in the ocean lack well-established chronologies. This is due to the fact that they are difficult to date with traditional techniques such as biostratigraphy and radiometric dating. Here, I develop age models for sediments collected from the International Drilling Program Expedition 329 by measuring the Os (osmium) isotopic composition of the hydrogenous portion of the clays. These extractions enable dating of the clays by aligning the Os isotope patterns observed in the clays to those in a reference curve with absolute age constraints through the Cenozoic. Our preliminary data enable future development of chronologies for three sediment cores from the high-latitude South Pacific and Southern Oceans, and demonstrate a wider utility of this method to establish age constraints on pelagic sediments worldwide. Moreover, the preliminary Os isotopic data provides a critical first step needed to examine the changes in Fe (iron) sources and cycling on millions of years timescales. Fe isotopic analysis was conducted at the same sites in the South Pacific and demonstrates that there are significant changes in the sources of Fe to the Southern Ocean over the last 90 Ma. These results lay the groundwork for the exploration of basin-scale sources to Fe source changes, which will have implications for understanding how biological productivity relates to Fe source variability over geological timescales.
ContributorsTegler, Logan Ashley (Author) / Anbar, Ariel (Thesis director) / Herckes, Pierre (Committee member) / Romaniello, Stephen (Committee member) / Department of English (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133051-Thumbnail Image.png
Description
As a child passes through the birth canal, they become inoculated with vital gram positive and gram-negative bacteria, aerobes and anaerobes. Breast milk helps to support this growing microbiome by providing oligosaccharides that support its proliferation. Breast milk can be considered the most nutritious source of food available to a

As a child passes through the birth canal, they become inoculated with vital gram positive and gram-negative bacteria, aerobes and anaerobes. Breast milk helps to support this growing microbiome by providing oligosaccharides that support its proliferation. Breast milk can be considered the most nutritious source of food available to a growing infant by providing the necessary nutrients, growth hormones and antibodies to promote digestive health, growth, and a strong immune system. The Developmental Origins of Health and Disease Theory (DOHaD) is a theory that suggests a growing fetus and nursing child's nutrients and immune system are dependent on the mother's exposure to nutrients and toxins. Studies have shown a positive correlation between the length of nursing and a child's overall health through life. In addition, consuming an enriched diet after weaning builds a strong immunological and nutritional basis from which the child can grow. This leads to improvements in a child's overall health, which has beneficial long-term effects on morbidity and mortality. This project applied the theory to two Middle Horizon (AD500-1100) individuals from Akapana, Tiwanaku, in the Lake Titicaca Basin, Bolivia. Stable nitrogen and carbon isotope analysis was applied to first molar serial samples of these two individuals to determine weaning age and early childhood diet. Both individuals were male; one male died in adolescence between the age of 9-15 years, and the other died as an elderly adult around the age of 50-59 years. The results showed that the male who died in adulthood was provisioned with supplemental and post-weaning foods high in animal protein, and received breast milk until around 37 months of age. The adolescent male was weaned between 11-12 months and consumed a diet dominated by C4 plants \u2014 most likely maize \u2014 with much less protein. The correlation between prolonged access to breast milk and a healthier and more nutritious childhood diet and longevity are consistent with the theory discussed above.
ContributorsCampbell, Sibella Sweelin (Author) / Knudson, Kelly (Thesis director) / Marsteller, Sara (Committee member) / Greenwald, Alexandra (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12