Matching Items (3)
Filtering by

Clear all filters

171370-Thumbnail Image.png
Description
Adults with autism spectrum disorder (ASD) face heightened risk of co-occurring psychiatric conditions, especially depression and anxiety disorders, which contribute to seven-fold higher suicide rates than the general population. Mindfulness-based stress reduction (MBSR) is an 8-week meditation intervention centered around training continuous redirection of attention toward present moment experience, and

Adults with autism spectrum disorder (ASD) face heightened risk of co-occurring psychiatric conditions, especially depression and anxiety disorders, which contribute to seven-fold higher suicide rates than the general population. Mindfulness-based stress reduction (MBSR) is an 8-week meditation intervention centered around training continuous redirection of attention toward present moment experience, and has been shown to improve mental health in autistic adults. However, the underlying therapeutic neural mechanisms and whether behavioral and brain changes are mindfulness-specific have yet to be elucidated. In this randomized clinical trial, I utilized functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) to characterize fMRI functional activity (Study 1) and connectivity (Study 2) and EEG neurophysiological (Study 3) changes between MBSR and a social support/relaxation education (SE) active control group. Study 1 revealed an MBSR-specific increase in the midcingulate cortex fMRI blood oxygen level dependent signal which was associated with reduced depression. Study 2 identified nonspecific intervention improvements in depression, anxiety, and autistic, and MBSR-specific improvements in the mindfulness trait ‘nonjudgment toward experience’ and in the executive functioning domain of working memory. MBSR-specific decreases in insula-thalamus and frontal pole-posterior cingulate functional connectivity was associated with improvements in anxiety, mindfulness traits, and working memory abilities. Both MBSR and SE groups showed decreased amygdala-sensorimotor and frontal pole-insula connectivity which correlated with reduced depression. Study 3 consisted of an EEG spectral power analysis at high-frequency brainwaves associated with default mode network (DMN) activity. Results showed MBSR-specific and nonspecific decreases in beta- and gamma-band power, with effects being generally more robust in the MBSR group; additionally, MBSR-specific decreases in posterior gamma correlated with anxiolytic effects. Collectively, these studies suggest: 1) social support is sufficient for improvements in depression, anxiety, and autistic traits; 2) MBSR provides additional benefits related to mindfulness traits and working memory; and 3) distinct and shared neural mechanisms of mindfulness training in adults with ASD, implicating the salience and default mode networks and high-frequency neurophysiology. Findings bear relevance to the development of personalized medicine approaches for psychiatric co-morbidity in ASD, provide putative targets for neurostimulation research, and warrant replication and extension using advanced multimodal imaging approaches.
ContributorsPagni, Broc (Author) / Braden, B. Blair (Thesis advisor) / Newbern, Jason (Thesis advisor) / Davis, Mary (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2022
193683-Thumbnail Image.png
Description
Serotonin 1B receptors (5-HT1BRs) are involved in cocaine reward via regulating activity of dopamine neurons. The 5-HT1BR agonist CP-94,253 or 5-HT1BR overexpression in the nucleus accumbens shell (NAcSh) enhances cocaine intake during maintenance of daily self-administration (SA) but inhibits intake after 21 days of abstinence in male rats. My central

Serotonin 1B receptors (5-HT1BRs) are involved in cocaine reward via regulating activity of dopamine neurons. The 5-HT1BR agonist CP-94,253 or 5-HT1BR overexpression in the nucleus accumbens shell (NAcSh) enhances cocaine intake during maintenance of daily self-administration (SA) but inhibits intake after 21 days of abstinence in male rats. My central hypothesis is that CP-94,253 acts at 5-HT1BRs located on the terminals of NAcSh GABA neurons that undergo regulatory changes in response to cocaine SA and subsequent abstinence resulting in an abstinence-induced switch in the functional effects of CP-94,253 in both male and female rats. In the first series of experiments, I compared the functional effects of CP-94,253 in female rats to male rats: 1) during maintenance of daily cocaine SA, 2) after 21-60 days abstinence, and 3) during the resumption of cocaine SA after abstinence (i.e. model of relapse). I found that CP-94,253 enhanced cocaine intake and breakpoints on a high-effort progressive ratio schedule of cocaine reinforcement during maintenance regardless of sex. By contrast, CP-94,253 attenuated cocaine intake after 21 days of abstinence and during the relapse test, regardless of sex. These findings suggest: 1) an abstinence-induced inhibitory effect of the 5-HT1BR agonist occurs in both sexes, 2) these inhibitory effects are long-lasting, and 3) the agonist may provide a novel therapeutic for cocaine use disorders. I next used RNAscope in situ hybridization to measure regulatory changes in 5-HT1BR mRNA expression and its co-expression with GABAergic and glutamatergic cell markers in the lateral and medial NAcSh subregions after abstinence from cocaine. I found no significant changes in these measures in either subregion of NAcSh after prolonged abstinence in either sex; however, I did observe that 95% of 5-HT1BR mRNA is co-localized in GABAergic neurons, whereas <2% is co-localized in glutamatergic cells. Future research investigating abstinence-induced, functional changes in 5-HT1BRs in subregions of the NAcSh is an alternate approach to further test my hypothesis. This research is important for the development of 5-HT1BR agonists as putative treatments of cocaine use disorders.
ContributorsScott, Samantha N (Author) / Neisewander, Janet L (Thesis advisor) / Newbern, Jason (Committee member) / Olive, Michael F (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2024
158493-Thumbnail Image.png
Description
Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work

Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work summarizes efforts to further understanding of satellite cell biology, using novel model organisms, bioengineering, and molecular and cellular approaches. Lizards are evolutionarily the closest vertebrates to humans that regenerate entire appendages. An analysis of lizard myoprogenitor cell transcriptome determined they were most transcriptionally similar to mammalian satellite cells. Further examination showed that among genes with the highest level of expression in lizard satellite cells were an increased number of regulators of chondrogenesis. In micromass culture, lizard satellite cells formed nodules that expressed chondrogenic regulatory genes, thus demonstrating increased musculoskeletal plasticity. However, to exploit satellite cells for therapeutics, development of an ex vivo culture is necessary. This work investigates whether substrates composed of extracellular matrix (ECM) proteins, as either coatings or hydrogels, can support expansion of this population whilst maintaining their myogenic potency. Stiffer substrates are necessary for in vitro proliferation and differentiation of satellite cells, while the ECM composition was not significantly important. Additionally, satellite cells on hydrogels entered a quiescent state that could be reversed when the cells were subsequently cultured on Matrigel. Proliferation and gene expression data further indicated that C2C12 cells are not a good proxy for satellite cells. To further understand how different signaling pathways control satellite cell behavior, an investigation of the Notch inhibitor protein Numb was carried out. Numb deficient satellite cells fail to activate, proliferate and participate in muscle repair. Examination of Numb isoform expression in satellite cells and embryonic tissues revealed that while developing limb bud, neural tube, and heart express the long and short isoforms of NUMB, satellite cells predominantly express the short isoforms. A preliminary immunoprecipitation- proteomics experiment suggested that the roles of NUMB in satellite cells are related to cell cycle modulation, cytoskeleton dynamics, and regulation of transcription factors necessary for satellite cell function.
ContributorsPalade, Joanna (Author) / Wilson-Rawls, Norma (Thesis advisor) / Rawls, Jeffrey (Committee member) / Kusumi, Kenro (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2020