Matching Items (6)
Filtering by

Clear all filters

131862-Thumbnail Image.png
Description
Cocaine use remains a prevalent problem, yet there are no effective pharmacological treatments against cocaine use disorders. Cocaine is known to affect serotonin neurotransmission in the brain. Previous data has shown the modulatory role of CP 94,253, a serotonin 1B receptor (5-HT1BR) agonist on cocaine self-administration at different periods of

Cocaine use remains a prevalent problem, yet there are no effective pharmacological treatments against cocaine use disorders. Cocaine is known to affect serotonin neurotransmission in the brain. Previous data has shown the modulatory role of CP 94,253, a serotonin 1B receptor (5-HT1BR) agonist on cocaine self-administration at different periods of the use-abstinence-relapse cycle. CP 94,253 facilitates cocaine self-administration in rats during the use maintenance phase, where rats are receiving daily intake of cocaine, yet attenuates it after a period of abstinence, when drug delivery is discontinued and rats are placed in home cages. Here we study the therapeutic potential of 5-HT1BR agonist pre-treatment on cocaine self-administration during these different time periods. Male and free-cycling female rats were trained to lever-press for cocaine (0.75 mg/kg i.v.) or sucrose pellets, until they met stable performance for total number of infusions on a fixed ratio 5 schedule of reinforcement. Rats were then tested with either the FDA-approved but less selective 5-HT1BR agonist zolmitriptan (3, 5.6, and 10 mg/kg s.c.; in descending order) prior to a period of abstinence or the more selective 5-HT1BR agonist CP 94,253 (5.6 mg/kg s.c.) after a period of prolonged abstinence and relapse (i.e. resumption of daily cocaine self-administration after a period of abstinence). Each session ran for 2 hours during which the training dose was available for the 1st hour and a low dose of cocaine (0.075 mg/kg i.v.) for the 2nd hour. Zolmitriptan was found to attenuate cocaine self-administration measures at a dose of 3 and 5.6 mg/kg when testing at the low dose of cocaine and at all three doses (3, 5.6, and 10 mg/kg) when testing at the training dose of cocaine. Zolmitriptan at the doses effective at attenuating cocaine intake did not alter sucrose self-administration. CP 94,253 (5.6 mg/kg s.c.) was found to have significant attenuative effects on self-administration measures both after a period of prolonged abstinence and after a period of relapse. Overall, these experiments showed that zolmitriptan decreased cocaine reinforcement without altering sucrose reinforcement as well as that CP 94,253 attenuates cocaine intake even after a period of relapse. These findings support the therapeutic potential of 5-HT1BR agonists as pharmacological treatments for cocaine use disorders.
ContributorsLe, Tien (Author) / Neisewander, Janet (Thesis director) / Newbern, Jason (Committee member) / Garcia, Raul (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133891-Thumbnail Image.png
Description
The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks. Young adult, male Sprague Dawley rats underwent restraint stress using

The current study investigated whether intermittent restraint stress (IRS) would impair fear extinction learning and lead to increased anxiety and depressive- like behaviors and then be attenuated when IRS ends and a post- stress rest period ensues for 6 weeks. Young adult, male Sprague Dawley rats underwent restraint stress using wire mesh (6hr/daily) for five days with two days off before restraint resumed for three weeks for a total of 23 restraint days. The groups consisted of control (CON) with no restraint other than food and water restriction yoked to the restrained groups, stress immediate (STR-IMM), which were restrained then fear conditioned soon after the end of the IRS paradigm, and stress given a rest for 6 weeks before fear conditioning commenced (STR-R6). Rats were fear conditioned by pairing a 20 second tone with a footshock, then given extinction training for two days (15 tone only on each day). On the first day of extinction, all groups discriminated well on the first trial, but then as trials progressed, STR-R6 discriminated between tone and context less than did CON. On the second day of extinction, STR- IMM froze more to context in the earlier trials than compared to STR-R6 and CON. As trials progressed STR-IMM and STR-R6 froze more to context than compared to CON. Together, CON discriminated between tone and context better than did STR-IMM and STR-R6. Sucrose preference, novelty suppressed feeding, and elevated plus maze was performed after fear extinction was completed. No statistical differences were observed among groups for sucrose preference or novelty suppressed feeding. For the elevated plus maze, STR-IMM entered the open arms and the sum of both open and closed arms fewer than did STR- R6 and CON. We interpret the findings to suggest that the stress groups displayed increased hypervigilance and anxiety with STR-R6 exhibiting a unique phenotype than that of STR-IMM and CON.
ContributorsShah, Vrishti Bimal (Author) / Conrad, Cheryl (Thesis director) / Newbern, Jason (Committee member) / Judd, Jessica (Committee member) / School of Life Sciences (Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134455-Thumbnail Image.png
Description
MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found

MicroRNAs are small, non-coding transcripts that control gene expression by preventing mRNA from translating into proteins. They have been implicated to play a role in many drug addictions. We previously found that miR-495 targets several addiction-related genes (ARGs) and is highly expressed in the nucleus accumbens (NAc). We also found miR-495 is downregulated in the NAc following acute cocaine administration, and cocaine motivation measured by breakpoint on a progressive ratio schedule of cocaine reinforcement is decreased when miR-495 is overexpressed. In this study, we manipulated the endogenous levels of miR-495 by using a viral vector. Using an animal model, rats were first trained for self-administration on a fixed ratio (FR) schedule of reinforcement. After they were infused with a lentivirus to overexpress (LV-miR-495) or decrease (LV-Sponge) miR-495, in the NAc shell. The rats were then tested for extinction and reinstatement of cocaine-seeking behavior, which are measures of motivation for cocaine. We measured the relative levels of miR-495 in the NAc shell using qRT-PCR. Our results show that overexpression of miR-495 decreased cocaine-seeking behavior during extinction and cocaine reinstatement, as we hypothesized. Surprisingly, miR-495 LV-sponge also decreased cocaine-seeking behavior in extinction, not as we hypothesized. However, we found that LV-Sponge failed to significantly decrease levels of miR-495 as intended. In conclusion, understanding why LV-Sponge decreased, rather than increased, miR-495 will need further study, however, the results with LV-miR-495 extend previous findings that miR-495 plays a vital role in the molecular mechanism that influences motivation to seek cocaine.
ContributorsChaudhury, Trisha (Author) / Neisewander, Janet (Thesis director) / Newbern, Jason (Committee member) / Powell, Gregory (Committee member) / Department of Psychology (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
171370-Thumbnail Image.png
Description
Adults with autism spectrum disorder (ASD) face heightened risk of co-occurring psychiatric conditions, especially depression and anxiety disorders, which contribute to seven-fold higher suicide rates than the general population. Mindfulness-based stress reduction (MBSR) is an 8-week meditation intervention centered around training continuous redirection of attention toward present moment experience, and

Adults with autism spectrum disorder (ASD) face heightened risk of co-occurring psychiatric conditions, especially depression and anxiety disorders, which contribute to seven-fold higher suicide rates than the general population. Mindfulness-based stress reduction (MBSR) is an 8-week meditation intervention centered around training continuous redirection of attention toward present moment experience, and has been shown to improve mental health in autistic adults. However, the underlying therapeutic neural mechanisms and whether behavioral and brain changes are mindfulness-specific have yet to be elucidated. In this randomized clinical trial, I utilized functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) to characterize fMRI functional activity (Study 1) and connectivity (Study 2) and EEG neurophysiological (Study 3) changes between MBSR and a social support/relaxation education (SE) active control group. Study 1 revealed an MBSR-specific increase in the midcingulate cortex fMRI blood oxygen level dependent signal which was associated with reduced depression. Study 2 identified nonspecific intervention improvements in depression, anxiety, and autistic, and MBSR-specific improvements in the mindfulness trait ‘nonjudgment toward experience’ and in the executive functioning domain of working memory. MBSR-specific decreases in insula-thalamus and frontal pole-posterior cingulate functional connectivity was associated with improvements in anxiety, mindfulness traits, and working memory abilities. Both MBSR and SE groups showed decreased amygdala-sensorimotor and frontal pole-insula connectivity which correlated with reduced depression. Study 3 consisted of an EEG spectral power analysis at high-frequency brainwaves associated with default mode network (DMN) activity. Results showed MBSR-specific and nonspecific decreases in beta- and gamma-band power, with effects being generally more robust in the MBSR group; additionally, MBSR-specific decreases in posterior gamma correlated with anxiolytic effects. Collectively, these studies suggest: 1) social support is sufficient for improvements in depression, anxiety, and autistic traits; 2) MBSR provides additional benefits related to mindfulness traits and working memory; and 3) distinct and shared neural mechanisms of mindfulness training in adults with ASD, implicating the salience and default mode networks and high-frequency neurophysiology. Findings bear relevance to the development of personalized medicine approaches for psychiatric co-morbidity in ASD, provide putative targets for neurostimulation research, and warrant replication and extension using advanced multimodal imaging approaches.
ContributorsPagni, Broc (Author) / Braden, B. Blair (Thesis advisor) / Newbern, Jason (Thesis advisor) / Davis, Mary (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2022
193683-Thumbnail Image.png
Description
Serotonin 1B receptors (5-HT1BRs) are involved in cocaine reward via regulating activity of dopamine neurons. The 5-HT1BR agonist CP-94,253 or 5-HT1BR overexpression in the nucleus accumbens shell (NAcSh) enhances cocaine intake during maintenance of daily self-administration (SA) but inhibits intake after 21 days of abstinence in male rats. My central

Serotonin 1B receptors (5-HT1BRs) are involved in cocaine reward via regulating activity of dopamine neurons. The 5-HT1BR agonist CP-94,253 or 5-HT1BR overexpression in the nucleus accumbens shell (NAcSh) enhances cocaine intake during maintenance of daily self-administration (SA) but inhibits intake after 21 days of abstinence in male rats. My central hypothesis is that CP-94,253 acts at 5-HT1BRs located on the terminals of NAcSh GABA neurons that undergo regulatory changes in response to cocaine SA and subsequent abstinence resulting in an abstinence-induced switch in the functional effects of CP-94,253 in both male and female rats. In the first series of experiments, I compared the functional effects of CP-94,253 in female rats to male rats: 1) during maintenance of daily cocaine SA, 2) after 21-60 days abstinence, and 3) during the resumption of cocaine SA after abstinence (i.e. model of relapse). I found that CP-94,253 enhanced cocaine intake and breakpoints on a high-effort progressive ratio schedule of cocaine reinforcement during maintenance regardless of sex. By contrast, CP-94,253 attenuated cocaine intake after 21 days of abstinence and during the relapse test, regardless of sex. These findings suggest: 1) an abstinence-induced inhibitory effect of the 5-HT1BR agonist occurs in both sexes, 2) these inhibitory effects are long-lasting, and 3) the agonist may provide a novel therapeutic for cocaine use disorders. I next used RNAscope in situ hybridization to measure regulatory changes in 5-HT1BR mRNA expression and its co-expression with GABAergic and glutamatergic cell markers in the lateral and medial NAcSh subregions after abstinence from cocaine. I found no significant changes in these measures in either subregion of NAcSh after prolonged abstinence in either sex; however, I did observe that 95% of 5-HT1BR mRNA is co-localized in GABAergic neurons, whereas <2% is co-localized in glutamatergic cells. Future research investigating abstinence-induced, functional changes in 5-HT1BRs in subregions of the NAcSh is an alternate approach to further test my hypothesis. This research is important for the development of 5-HT1BR agonists as putative treatments of cocaine use disorders.
ContributorsScott, Samantha N (Author) / Neisewander, Janet L (Thesis advisor) / Newbern, Jason (Committee member) / Olive, Michael F (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2024
156920-Thumbnail Image.png
Description
Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors in rat models of psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. I injected mice daily with cocaine for 20 days and then tested them 20 days after their last injection. The results showed that the 5-HT1BR agonist CP94253 attenuated sensitization of cocaine-induced locomotion and cocaine-seeking behavior, measured as a decrease in the ability of a cocaine priming injection to reinstate extinguished cocaine-conditioned place preference (CPP). Subsequent experiments showed that CP94253 given prior to conditioning sessions had no effect on acquisition of methamphetamine-CPP, a measure of drug reward; however, CP94253 given prior to testing attenuated expression of methamphetamine-CPP, a measure of drug seeking. To examine brain regions and cell types involved in CP94253 attenuation of methamphetamine-seeking, I examined changes in the immediate early gene product, Fos, which is a marker of brain activity involving gene transcription changes. Mice expressing methamphetamine-CPP showed elevated Fos expression in the VTA and basolateral amygdala (BlA), and reduced Fos in the central nucleus of the amygdala (CeA). In mice showing CP94253-induced attenuation of methamphetamine-CPP expression, Fos was increased in the VTA, NAc shell and core, and the dorsal medial caudate-putamen. CP94253 also reversed the methamphetamine-conditioned decrease in Fos expression in the CeA and the increase in the BlA. In drug-naïve, non-conditioned control mice, CP94253 only increased Fos in the CeA, suggesting that the increases observed in methamphetamine-conditioned mice were due to conditioning rather than an unconditioned effect of CP94253 on Fos expression. In conclusion, 5-HT1BR stimulation attenuates both cocaine and methamphetamine seeking in mice, and that the latter effect may involve normalizing activity in the amygdala and increasing activity in the mesolimbic pathway. These findings further support the potential efficacy of 5-HT1BR agonists as pharmacological interventions for psychostimulant craving in humans.
ContributorsDer-Ghazarian, Taleen (Author) / Neisewander, Janet (Thesis advisor) / Olive, Foster (Committee member) / Newbern, Jason (Committee member) / Wu, Jie (Committee member) / Arizona State University (Publisher)
Created2018