Matching Items (2)
Filtering by

Clear all filters

136252-Thumbnail Image.png
Description
This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a

This project aims to address the current protocol regarding the diagnosis and treatment of traumatic brain injury (TBI) in medical industries around the world. Although there are various methods used to qualitatively determine if TBI has occurred to a patient, this study attempts to aid in the creation of a system for quantitative measurement of TBI and its relative magnitude. Through a method of artificial evolution/selection called phage display, an antibody that binds highly specifically to a post-TBI upregulated brain chondroitin sulfate proteoglycan called neurocan has been identified. As TG1 Escheria Coli bacteria were infected with KM13 helper phage and M13 filamentous phage in conjunction, monovalent display of antibody fragments (ScFv) was performed. The ScFv bind directly to the neurocan and from screening, phage that produced ScFv's with higher affinity and specificity to neurocan were separated and purified. Future research aims to improve the ScFv characteristics through increased screening toward neurocan. The identification of a highly specific antibody could lead to improved targeting of neurocan post-TBI in-vivo, aiding researchers in quantitatively defining TBI by visualizing its magnitude.
ContributorsSeelig, Timothy Scott (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
163463-Thumbnail Image.png
Description

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases such as Alzheimer’s Disease (AD). One such molecular signaling pathway that may link TBI to AD is necroptosis. Necroptosis is an atypical mode of cell death compared with traditional apoptosis, both of which have been demonstrated to be present post-TBI [4-6]. Necroptosis is initiated by tissue necrosis factor (TNF) signaling through the RIPK1/RIPK3/MLKL pathway, leading to cell failure and subsequent death. Prior studies in rodent TBI models report necroptotic activity acutely after injury, within 48 hours. Here, the study objective was to recapitulate prior data and characterize MLKL and RIPK1 cortical expression post-TBI with our lab’s controlled cortical impact mouse model. Using standard immunohistochemistry approaches, it was determined that the tissue sections acquired by prior lab members were of poor quality to conduct robust MLKL and RIPK1 immunostaining assessment. Therefore, the thesis focused on presenting the staining method completed. The discussion also expanded on expected results from these studies regarding the spatial distribution necroptotic signaling in this TBI model.

ContributorsHuber, Kristin (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05