Matching Items (73)
Filtering by

Clear all filters

154202-Thumbnail Image.png
Description
The recent proposal of two-way relaying has attracted much attention due to its promising features for many practical scenarios. Hereby, two users communicate simultaneously in both directions to exchange their messages with the help of a relay node. This doctoral study investigates various aspects of two-way relaying. Specifically, the issue

The recent proposal of two-way relaying has attracted much attention due to its promising features for many practical scenarios. Hereby, two users communicate simultaneously in both directions to exchange their messages with the help of a relay node. This doctoral study investigates various aspects of two-way relaying. Specifically, the issue of asynchronism, lack of channel knowledge, transmission of correlated sources and multi-way relaying techniques involving multiple users are explored.

With the motivation of developing enabling techniques for two-way relay (TWR) channels experiencing excessive synchronization errors, two conceptually-different schemes are proposed to accommodate any relative misalignment between the signals received at any node. By designing a practical transmission/detection mechanism based on orthogonal frequency division multiplexing (OFDM), the proposed schemes perform significantly better than existing competing solutions. In a related direction, differential modulation is implemented for asynchronous TWR systems that lack the channel state information (CSI) knowledge. The challenge in this problem compared to the conventional point-to-point counterpart arises not only from the asynchrony but also from the existence of an interfering signal. Extensive numerical examples, supported by analytical work, are given to demonstrate the advantages of the proposed schemes.

Other important issues considered in this dissertation are related to the extension of the two-way relaying scheme to the multiple-user case, known as the multi-way relaying. First, a distributed source coding solution based on Slepian-Wolf coding is proposed to compress correlated messages close to the information theoretical limits in the context of multi-way relay (MWR) channels. Specifically, the syndrome approach based on low-density parity-check (LDPC) codes is implemented. A number of relaying strategies are considered for this problem offering a tradeoff between performance and complexity. The proposed solutions have shown significant improvements compared to the existing ones in terms of the achievable compression rates. On a different front, a novel approach to channel coding is proposed for the MWR channel based on the implementation of nested codes in a distributed manner. This approach ensures that each node decodes the messages of the other users without requiring complex operations at the relay, and at the same time, providing substantial benefits compared to the traditional routing solution.
ContributorsSalīm, Aḥmad (Author) / Duman, Tolga M. (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2015
154022-Thumbnail Image.png
Description
There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels

There has been a lot of work on the characterization of capacity and achievable rate regions, and rate region outer-bounds for various multi-user channels of interest. Parallel to the developed information theoretic results, practical codes have also been designed for some multi-user channels such as multiple access channels, broadcast channels and relay channels; however, interference channels have not received much attention and only a limited amount of work has been conducted on them. With this motivation, in this dissertation, design of practical and implementable channel codes is studied focusing on multi-user channels with special emphasis on interference channels; in particular, irregular low-density-parity-check codes are exploited for a variety of cases and trellis based codes for short block length designs are performed.

Novel code design approaches are first studied for the two-user Gaussian multiple access channel. Exploiting Gaussian mixture approximation, new methods are proposed wherein the optimized codes are shown to improve upon the available designs and off-the-shelf point-to-point codes applied to the multiple access channel scenario. The code design is then examined for the two-user Gaussian interference channel implementing the Han-Kobayashi encoding and decoding strategy. Compared with the point-to-point codes, the newly designed codes consistently offer better performance. Parallel to this work, code design is explored for the discrete memoryless interference channels wherein the channel inputs and outputs are taken from a finite alphabet and it is demonstrated that the designed codes are superior to the single user codes used with time sharing. Finally, the code design principles are also investigated for the two-user Gaussian interference channel employing trellis-based codes with short block lengths for the case of strong and mixed interference levels.
ContributorsSharifi, Shahrouz (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2015
154246-Thumbnail Image.png
Description
The power of science lies in its ability to infer and predict the

existence of objects from which no direct information can be obtained

experimentally or observationally. A well known example is to

ascertain the existence of black holes of various masses in different

parts of the universe from indirect evidence, such as X-ray

The power of science lies in its ability to infer and predict the

existence of objects from which no direct information can be obtained

experimentally or observationally. A well known example is to

ascertain the existence of black holes of various masses in different

parts of the universe from indirect evidence, such as X-ray emissions.

In the field of complex networks, the problem of detecting

hidden nodes can be stated, as follows. Consider a network whose

topology is completely unknown but whose nodes consist of two types:

one accessible and another inaccessible from the outside world. The

accessible nodes can be observed or monitored, and it is assumed that time

series are available from each node in this group. The inaccessible

nodes are shielded from the outside and they are essentially

``hidden.'' The question is, based solely on the

available time series from the accessible nodes, can the existence and

locations of the hidden nodes be inferred? A completely data-driven,

compressive-sensing based method is developed to address this issue by utilizing

complex weighted networks of nonlinear oscillators, evolutionary game

and geospatial networks.

Both microbes and multicellular organisms actively regulate their cell

fate determination to cope with changing environments or to ensure

proper development. Here, the synthetic biology approaches are used to

engineer bistable gene networks to demonstrate that stochastic and

permanent cell fate determination can be achieved through initializing

gene regulatory networks (GRNs) at the boundary between dynamic

attractors. This is experimentally realized by linking a synthetic GRN

to a natural output of galactose metabolism regulation in yeast.

Combining mathematical modeling and flow cytometry, the

engineered systems are shown to be bistable and that inherent gene expression

stochasticity does not induce spontaneous state transitioning at

steady state. By interfacing rationally designed synthetic

GRNs with background gene regulation mechanisms, this work

investigates intricate properties of networks that illuminate possible

regulatory mechanisms for cell differentiation and development that

can be initiated from points of instability.
ContributorsSu, Ri-Qi (Author) / Lai, Ying-Cheng (Thesis advisor) / Wang, Xiao (Thesis advisor) / Bliss, Daniel (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2015