Matching Items (18)
Filtering by

Clear all filters

149091-Thumbnail Image.png
Description

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance

Geology and its tangential studies, collectively known and referred to in this thesis as geosciences, have been paramount to the transformation and advancement of society, fundamentally changing the way we view, interact and live with the surrounding natural and built environment. It is important to recognize the value and importance of this interdisciplinary scientific field while reconciling its ties to imperial and colonizing extractive systems which have led to harmful and invasive endeavors. This intersection among geosciences, (environmental) justice studies, and decolonization is intended to promote inclusive pedagogical models through just and equitable methodologies and frameworks as to prevent further injustices and promote recognition and healing of old wounds. By utilizing decolonial frameworks and highlighting the voices of peoples from colonized and exploited landscapes, this annotated syllabus tackles the issues previously described while proposing solutions involving place-based education and the recentering of land within geoscience pedagogical models. (abstract)

ContributorsReed, Cameron E (Author) / Richter, Jennifer (Thesis director) / Semken, Steven (Committee member) / School of Earth and Space Exploration (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135201-Thumbnail Image.png
Description
Traditional educational infrastructures and their corresponding architectures have degenerated to work in opposition to today's scholastic objectives. In consideration of the necessity of formal education and academic success in modern society, a re-imagination of the ideal educational model and its architectural equivalent is long overdue. Fortunately, the constituents of a

Traditional educational infrastructures and their corresponding architectures have degenerated to work in opposition to today's scholastic objectives. In consideration of the necessity of formal education and academic success in modern society, a re-imagination of the ideal educational model and its architectural equivalent is long overdue. Fortunately, the constituents of a successful instructional method exist just outside our windows. This thesis, completed in conjunction with the ADE422 architectural studio, seeks to identify the qualities of a new educational paradigm and its architectural manifestation through an exploration of nature and biophilic design. Architectural Studio IV was challenged to develop a new academic model and corresponding architectural integration for the Herberger Young Scholars Academy, an educational institution for exceptionally gifted junior high and high school students, located on the West Campus of Arizona State University. A commencing investigation of pre-established educational methods and practices evaluated compulsory academic values, concepts, theories, and principles. External examination of scientific studies and literature regarding the functions of nature within a scholastic setting assisted in the process of developing a novel educational paradigm. A study of game play and its relation to the learning process also proved integral to the development of a new archetype. A hypothesis was developed, asserting that a nature-centric educational model was ideal. Architectural case studies were assessed to determine applicable qualities for a new nature-architecture integration. An architectural manifestation was tested within the program of the Herberger Young Scholars Academy and through the ideal functions of nature within an academic context.
ContributorsTate, Caroline Elizabeth (Author) / Underwood, Max (Thesis director) / Hejduk, Renata (Committee member) / De Jarnett, Mitchell (Committee member) / The Design School (Contributor) / W. P. Carey School of Business (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135856-Thumbnail Image.png
Description
The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In

The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In the past years, further studies have investigated the benefits of FC in statics, dynamics, and mechanics of materials courses and indicate similar performance benefits. However, these studies address a need for additional studies to validate their results due to the short length of their research or small classroom size. In addition, many of these studies do not measure student attitudes, such as self-efficacy, or the difference in time spent out of class on coursework. The objective of this research is to determine the effectiveness of the flipped classroom system (FC) in comparison to the traditional classroom system (TC) in a large mechanics of materials course. Specifically, it aims to measure student performance, student self-efficacy, student attitudes on lecture quality, motivation, attendance, hours spent out of class, practice, and support, and difference in impact between high, middle, and low achieving students. In order to accomplish this, three undergraduate mechanics of materials courses were analyzed during the spring 2015 semester. One FC section served as the experimental group (92 students), while the two TC sections served as the control group (125 students). To analyze student self-efficacy and attitudes, a survey instrument was designed to measure 18 variables and was administered at the end of the semester. Standardized core outcomes were compared between groups to analyze performance. This paper presents the specific course framework used in this FC, detailed results of the quantitative and qualitative analysis, and discussion of strengths and weaknesses. Overall, an overwhelming majority of students were satisfied with FC and would like more of their classes taught using FC. Strengths of this teaching method include greater confidence, better focus, higher satisfaction with practice in class and assistance received from instructors and peers, more freedom to express ideas and questions in class, and less time required outside of class for coursework. Results also suggest that this method has a greater positive impact on high and low achieving students and leads to higher performance. The criticisms made by students focused on lecture videos to have more worked examples. Overall, results suggest that FC is more effective than TC in a large mechanics of materials course.
ContributorsLee, Andrew Ryan (Author) / Zhu, Haolin (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137439-Thumbnail Image.png
Description
Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative

Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative distribution system to inspire and empower people in Bangladesh and across the world. To start this process, we are working with the Rahima Hoque Girls' school in the rural area of Raipura, Bangladesh to give girls access to clean water where they spend the most time. Through our assessment trip in May 2012, we were able to acquire technical data, community input, and partnerships necessary to move our project forward. Additionally, we realized that in many cases, including the Rahima Hoque school, water problems are not caused by a lack of technology, but rather a lack of utilization and maintenance long-term. To remedy this, 33 Buckets has identified a local filter to have installed at the school, and has designed a small-scale business focused on selling clean water in bulk to the surrounding community. Our price point and association with the Rahima Hoque Girls' school makes our solution sustainable. Plus, with the success of our first site, we see the potential to scale. We already have five nearby schools interested in working to implement similar water projects, and with over 100,000 schools in Bangladesh, many of which lack access to the right water systems, we have a huge opportunity to impact millions of lives. This thesis project describes our journey through this process. First, an introduction to our work prior to the assessment trip and through the ASU EPICS program is given. Second, we include quantitative and qualitative details regarding our May 2012 assessment trip to the Rahima Hoque school and Dhaka. Third, we recount some of the experiences we were able to participate in following the trip to Bangladesh, including the Dell Social Innovation Challenge. Fourth, we examine the technical filtration methods, business model development, and educational materials that will be used to implement our solution this summer. Finally, we include an Appendix with a variety of social venture competitions and applications that we have submitted over the past two years, in addition to other supplementary materials. These are excellent examples of our diligence and provide unique insight into the growth of our project.
ContributorsStrong, Paul Andrew (Co-author) / Shah, Pankti (Co-author) / Huerta, Mark (Co-author) / Henderson, Mark (Thesis director) / El Asmar, Mounir (Committee member) / LaBelle, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137184-Thumbnail Image.png
Description
The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials

The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials engineering and its related concepts, a system of lecture interventions has been put in place to increase concept comprehension by supplementing lecture units with various activities, from additional worksheets, explicit concept discussions, and most recently, YouTube videos showcasing specific concepts and situations. In an attempt to correct the lack of actual concept comprehension, these interventions seek to interact with the human mind in a way that capitalizes on its ability to process and interpret non-linear knowledge and information.

Using a concept test given prior to the lecture unit, and after, the difference in scores is used to recognize if the concepts presented have actually been comprehended. Used specifically in a lecture unit on solubility and solutions, the concept test tested student’s knowledge of supersaturated, saturated, and unsaturated solutions. With a visual identification and a written explanation, the student’s ability to identify and explain the three solutions was tested.

In order to determine the cause of the change in score from pre- to post-test, an analysis of the change in scores and the effects of question type and solution type was conducted. The significant results are as follows:
 The change in score from pre- to post-test was found to be significant, with the only difference between the two tests being the lecture unit and intervention
 From pre- to post-test, solution type had a significant effect on the score, with the unsaturated solution being the most easily recognized and explained solution type
 Students that felt that the YouTube videos greatly increased their concept comprehension, on average, performed better than their counterparts and also saw a greater increase their score from pre- to post-test
ContributorsLinich, Christopher Graham (Author) / Krause, Stephen (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137052-Thumbnail Image.png
Description
The purpose of this creative thesis project is to create the framework of an educational class package based off of a course offered at Arizona State University. The course chosen for this project is an honors course titled Deductive Logic: Leadership and Management Techniques and is taught by Dean Kashiwagi,

The purpose of this creative thesis project is to create the framework of an educational class package based off of a course offered at Arizona State University. The course chosen for this project is an honors course titled Deductive Logic: Leadership and Management Techniques and is taught by Dean Kashiwagi, PhD. The class package is designed to be published over an online platform so students and professors from various institutions can access the material. Currently the platform is in its final stages of development and is slated to go live on July of 2014. The future development of the package will be geared towards facilitating interdisciplinary collaboration between institutions based off of course concepts.
ContributorsGunnoe, Jake Alan (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Del E. Webb Construction (Contributor)
Created2014-05
133280-Thumbnail Image.png
Description
This thesis examines a variety of techniques implemented in modern senior design classes at Arizona State University with a special focus on the mechanical engineering senior capstone the traditional ABET capstone mechanical engineering capstone course, as well as the InnovationSpace Program. First, an overview regarding the growing profession of engineering

This thesis examines a variety of techniques implemented in modern senior design classes at Arizona State University with a special focus on the mechanical engineering senior capstone the traditional ABET capstone mechanical engineering capstone course, as well as the InnovationSpace Program. First, an overview regarding the growing profession of engineering and its relation to academic education is examined. Next, program and project overviews of both the capstone senior design course and the InnovationSpace are detailed, followed by a comparison of the two course's curriculum. Finally, key differences are highlighted, and suggestions introduced that might serve to improve both courses in the future. The senior design capstone course was found to lack accountability and diversity leading to a lack of innovative solutions. However, the course simultaneously succeeded in maintaining wellaccepted traditional engineer practices and documentation. The InnovationSpace program on the other hand provides accountability, diversity, and modern approaches to product development.
ContributorsKennedy, Patrick Bernales (Author) / Kuhn, Anthony (Thesis director) / Hedges, Craig (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137652-Thumbnail Image.png
Description
With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning

With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning and emotion is explored. Pre- and post-tests were given to children attending a week-long summer freshwater ecology camp; their knowledge of and emotional connection to different ecological concepts were measured. Two separate ecosystems were tested \u2014 a freshwater ecosystem that was taught over the course of the week, and a marine ecosystem for comparison. Increases in knowledge and emotion were seen in every freshwater ecosystem concept. Additionally, the knowledge and emotion scores were correlated, suggesting a positive relationship between them. The marine ecosystem did not show improvements in concrete knowledge, but showed increases in abstract learning, indicating that the abstract concepts learned about the freshwater ecosystem were able to transfer to the marine. Overall results show the ability of a hands-on learning experience to foster an emotional connection between a child and the subject matter. However, long-term studies are needed to track the relationship between children and their knowledge of and emotional connection to the subject matter.
ContributorsMossler, Max Vaughn (Author) / Pearson, David (Thesis director) / Smith, Andrew (Committee member) / Berkowitz, Alan (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2013-05
135913-Thumbnail Image.png
Description
Current literature on sustainability education and its core competencies (systems thinking, normative, interpersonal, strategic, and future thinking) has yet to acknowledge the K-12 level, concentrating instead on higher-level institutions. To initiate study at the critical K-12 level, a curriculum module composed of four lessons to address the wicked sustainability problem

Current literature on sustainability education and its core competencies (systems thinking, normative, interpersonal, strategic, and future thinking) has yet to acknowledge the K-12 level, concentrating instead on higher-level institutions. To initiate study at the critical K-12 level, a curriculum module composed of four lessons to address the wicked sustainability problem of drought in the Sonoran Desert was developed, piloted, and evaluated. The framework of each lesson combined the core competencies and the 5Es pedagogy (engage, explore, explain, elaborate, and evaluate). Two lessons were successfully piloted in two seventh grade middle-school science classes in Phoenix, Arizona. Topics addressed were the water cycle, types of drought, water systems, and mitigation methods. Evaluation determined a high level of student engagement. Post-pilot teacher questionnaires revealed a high degree of support for inclusion of sustainability education and core competencies addressing drought in future opportunities. It is concluded that lessons in the future can adopt the core competences of sustainability with the support of educators in Arizona.
ContributorsComeaux, Victoria (Co-author) / Harding, Bridget (Co-author) / Larson, Kelli L. (Thesis director) / Frisk Redman, Erin (Committee member) / School of Sustainability (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148426-Thumbnail Image.png
Description

The purpose of this study was to bring new information to the field of education research on<br/>graduation rates and school programming. Research on graduation rates and the effects of school<br/>programs exist, however there is not an abundance of research aimed specifically at Title I high<br/>schools. The goal was to find

The purpose of this study was to bring new information to the field of education research on<br/>graduation rates and school programming. Research on graduation rates and the effects of school<br/>programs exist, however there is not an abundance of research aimed specifically at Title I high<br/>schools. The goal was to find what school characteristics might impact graduation rates in this<br/>population. The thesis focused on Title I high schools in the Phoenix Union District with a<br/>graduating 2019 class of at least 250 students. This limited the effect of variability (school size,<br/>location, socioeconomic status). To research this topic, school characteristics were selected<br/>including course rigor, mentor programs, and college prep programs, as well as specific schools.<br/>To obtain the information, multiple sources were used including the Arizona Department of<br/>Education website, school websites, and school administrators/staff. The research revealed that<br/>the effect of course rigor, college prep programs, and mentorship on graduation rates in Phoenix<br/>Union High Schools is not apparent. Further research should be conducted into other possible<br/>causes for the gaps in graduation rates between the Title I high schools in this district. Future<br/>research on ELL students and programs in the Phoenix Union district and their effectiveness or<br/>lack thereof is also recommended. The research shows that this large demographic negatively<br/>correlates with the overall graduation rates at the six schools researched.

ContributorsSmith, Keegan Brett (Co-author) / Mora, Marilyn (Co-author) / Kappes, Janelle (Thesis director) / Panneton, Teresa (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Sanford School of Social and Family Dynamics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05