Matching Items (23)
Filtering by

Clear all filters

137007-Thumbnail Image.png
Description
This thesis aims to enhance K-6 Education in the United States by developing recommendations for how technology is utilized in the classroom as a means to teach collaborative skills. By applying the technological capabilities we have today to the Common Core State Standards that are gradually being adopted and implemented,

This thesis aims to enhance K-6 Education in the United States by developing recommendations for how technology is utilized in the classroom as a means to teach collaborative skills. By applying the technological capabilities we have today to the Common Core State Standards that are gradually being adopted and implemented, officials can improve the quality of education across the country and create classroom environments conducive to knowledge acquisition and skill development.
The research begins with the history of standards, starting with traditional outcome-based standards. It then delves into the Partnership for 21st Century Skills (P21), which highlights the type of skills 21st century students are expected to develop and master by the time they enter college and careers. Next, it explores the hot topic of Education to this date: Common Core State Standards. In the midst of educational reform, these standards seek to add consistency across the nation in regards to what students should know at each grade level and also encourage teaching of the 21st century skills. This section briefly details the content of Common Core English Language Arts and Mathematics standards.
After summarizing P21 and Common Core, this report shifts into its focused 21st century skill: collaboration. As one of the 4 C’s that P21 and Common Core emphasize in their standards, it is imperative to research critical elements of collaboration as they relate to groups and teams of all ages. Even more specifically, collaboration is a practice that is becoming more and more standard in business across all industries, so it is a skill that is highly in demand for students to acquire. In regards to collaboration, Executive Vice President of Verizon, Bob Mudge, states, “companies are able to innovate much more quickly and even create solutions to problems that may not be prevalent issues yet” (Mudge 1). The standards expect that students will be prepared to collaborate in college and careers, so key elements of collaboration in those settings—in-person or virtual—need apply or be simplified to K-6 collaborative environments. This section also analyzes a case study experiment on young children about how technology functionality and design enables, encourages, or enforces collaboration.
Next, this thesis reviews three case studies that represent evolution in our understanding of technology’s role as a support system in teaching and learning collaboration. The first case study shows how simple handheld devices assisted in correcting weaknesses in a variety of collaborative and organizational skills. The second study utilizes interactive tabletop technology to realize the idea of tracking collaborative ability in real time through synchronized audio and touch recording. Finally, researchers assess the effectiveness of one student to one device (1:1) initiatives by gathering student-reported data before and after the program’s implementation, which largely speak to the direction of many schools’ technology strategies.
To supplement all of the secondary research above, the researcher of this thesis conducted interviews with nine K-6 teachers to gather their insights on collaboration and how they facilitate it. They explain how they use technology in their classroom to enhance the learning environment. Additionally, they give opinions on what could be done to make collaboration more easily taught and facilitated, as well as what would better develop their students’ collaborative skills.
The compilation of this information then leads to implications of what needs to be present, from a technology standpoint, to more effectively teach collaborative skills to our schoolchildren. This includes a brief industry analysis of a program that already exists, as well as recommendations for new technology that considers the research conducted throughout the paper. Another implication addressed centers on the instruction and facilitation of technology and the digital divide that can result from varying competency among teachers, which brings to light the need for proper technology development programs for educators.
ContributorsPetrovich, Nicholas Hugh (Author) / Ostrom, Amy (Thesis director) / Ostrom, Lonnie (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor) / Department of Management (Contributor) / School of Film, Dance and Theatre (Contributor)
Created2014-05
137019-Thumbnail Image.png
Description
This paper outlines the process of designing, creating, and implementing a supply chain management outreach program to benefit high schools students in areas surrounding Intel campuses. The program—which spreads awareness of supply chain management and STEM (Science, Technology, Engineering, Math) and how they work together in businesses today—was created and

This paper outlines the process of designing, creating, and implementing a supply chain management outreach program to benefit high schools students in areas surrounding Intel campuses. The program—which spreads awareness of supply chain management and STEM (Science, Technology, Engineering, Math) and how they work together in businesses today—was created and tested by me, with the help of the following committee members: James Kellso – Director, Cheryl Dalsin – 2nd Reader, and Jack Berg – 3rd Reader. The end goal is for this program to become sustainable, and for it to spread as far and wide as possible. Supply chain management and STEM are becoming crucial to understand in businesses today and will only become more imperative in future years.

Keywords: supply chain management (SCM), Science Technology Engineering Math (STEM)
ContributorsHughes, Kelsey Ellen (Author) / Kellso, James (Thesis director) / Dalsin, Cheryl (Committee member) / Berg, Jack (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor) / Department of Supply Chain Management (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-05
135688-Thumbnail Image.png
Description
Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced

Education is a very sensitive topic when it comes to implementing the right policies. From professionals well-versed in the topic, to the very students who are being taught, feedback for reform is constantly being addressed. Nonetheless, there remains a large gap between the performance of some of the most advanced countries in the world and the United States of America. As it stands today, USA is arguably the most technologically advanced country and the outright leader of the free market. For over a century this nation has been exceeding expectations in nearly every industry known to man and aiding the rest of the world in their endeavors for a higher standard of living. Yet, there seems to be something critically wrong with the way a large majority of the younger generation are growing up. How can a country so respected in the world fall so far behind in what is considered the basics of human education: math and science? The Trends in International Mathematics and Science Study (TIMSS) is a series of assessments taken by countries all around the world to determine the strength of their youth's knowledge. Since its inception in 1995, TIMSS has been conducted every four years with an increasing number of participating countries and students each time. In 1999 U.S. eighth-graders placed #19 in the world for mathematics and #18 for science (Appendix Fig. 1). In the years following, and further detailed in the thesis, the U.S. managed to improve the overall performance by a small margin but still remained a leg behind countries like Singapore, Hong Kong, Japan, Russia, and more. Clearly these countries were doing something right as they consistently managed to rank in the top tier. Over the course of this paper we will observe and analyze why and how Singapore has topped the TIMSS list for both math and science nearly every time it has been administered over the last two decades. What is it that they are teaching their youth that enables them to perform exceptionally above the norm? Why is it that we cannot use their techniques as a guideline to increase the capabilities of our future generations? We look to uncover the teaching methods of what is known as Singapore Math and how it has helped students all over the world. By researching current U.S. schools that have already implemented the system and learning about their success stories, we hope to not only educate but also persuade the local school districts on why integrating Singapore Math into their curriculum will lead to the betterment of the lives of thousands of children and the educational threshold of this great nation.
ContributorsKichloo, Parth (Co-author) / Leverenz, Michael (Co-author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Rivera, Alfredo (Committee member) / Department of Management (Contributor) / Department of Marketing (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning

The academic environment has historically been somewhat slow to implement and adopt new technologies. However, developments in video games have created an opportunity for students to learn new skills and topics through nontraditional mediums of education. The disruption caused by the COVID-19 pandemic further highlighted the need for flexible learning opportunities. Joystick Education is our approach to addressing this need. Through online, game-based tutoring and a database of video games with high educational value, Joystick Education creates a learning environment that is effective, fun, and engaging for students. We analyzed popular, mainstream video games for educational content and selected nine games that teach concepts like history, biology, or physics while playing the game. Through promotion on social media, we generated buzz around our website which led to 103 unique visitors over our first month online and two customers requesting to book our tutoring service. We are confident that given more time to grow, Joystick Education can generate profit and become a successful business.

ContributorsVanlue, Aleczander Bryce (Co-author) / Bartels, Parker (Co-author) / Barrong, Tanner (Co-author) / Byrne, Jared (Thesis director) / Pierce, John (Committee member) / Department of Marketing (Contributor) / Department of Management and Entrepreneurship (Contributor, Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
DescriptionAs an aspiring math teacher, I have created visual representation of my philosophy of education in the form of an embroidered skirt, bringing together my love of sewing and mathematics.
ContributorsOng, Rachel (Author) / Nishimura, Joel (Thesis director) / Johnston, Carmen (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2023-05
Description

As an aspiring math teacher, I have created visual representation of my philosophy of education in the form of an embroidered skirt, bringing together my love of sewing and mathematics.

ContributorsOng, Rachel (Author) / Nishimura, Joel (Thesis director) / Johnston, Carmen (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2023-05
ContributorsOng, Rachel (Author) / Nishimura, Joel (Thesis director) / Johnston, Carmen (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2023-05
184884-Thumbnail Image.jpg
ContributorsOng, Rachel (Author) / Nishimura, Joel (Thesis director) / Johnston, Carmen (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2023-05
184885-Thumbnail Image.jpg
ContributorsOng, Rachel (Author) / Nishimura, Joel (Thesis director) / Johnston, Carmen (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2023-05
184886-Thumbnail Image.jpg
ContributorsOng, Rachel (Author) / Nishimura, Joel (Thesis director) / Johnston, Carmen (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2023-05