Matching Items (10)
Filtering by

Clear all filters

147999-Thumbnail Image.png
Description

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the

The purpose of this study is to examine the social and communicative barriers LGBTQIA+ students face when seeking healthcare at campus health and counseling services at Arizona State University. Social barriers relate to experiences and internalizations of societal stigma experienced by sexual and gender minority individuals as well as the anticipation of such events. Communication between patient and provider was assessed as a potential barrier with respect to perceived provider LGBTQIA+ competency. This study applies the minority stress model, considering experiences of everyday stigma and minority stress as a predictor of healthcare utilization among sexual and gender minority students. The findings suggest a small but substantial correlation between minority stress and healthcare use with 23.7% of respondents delaying or not receiving one or more types of care due to fear of stigma or discrimination. Additionally, communication findings indicate a lack of standardization of LGBTQIA+ competent care with experiences varying greatly between respondents.

ContributorsZahn, Jennica (Author) / Davis, Olga (Thesis director) / LeMaster, Benny (Committee member) / Watts College of Public Service & Community Solut (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131585-Thumbnail Image.png
Description
Project Based Learning is a teaching strategy that engages students in content skills through real life questions that are aimed to drive students to explore possible solutions. The question is used as a driving force for all of their learning for that particular unit or question. This gives students concrete

Project Based Learning is a teaching strategy that engages students in content skills through real life questions that are aimed to drive students to explore possible solutions. The question is used as a driving force for all of their learning for that particular unit or question. This gives students concrete and engaging examples of how the content they are learning can relate to real life problems. All of the content is still aligned to grade level standards to insure that students are learning academic content. Project Based Learning can benefit students in a variety of different ways. Projects create a sense of meaning for students. They show students that their learning is all building towards a common and tangible goal. Projects also teach students invaluable cooperation skills. The development of these skills is crucial to support students in college and career readiness. Project Based Learning has been proven to work by increasing student learning and motivation. The projects are exciting and include many different concepts that students may not be familiar with from a traditional classroom setting. This can include but is not limited to creating a model, defending your ideas through discussion, presenting ideas to your community and much more. These methods of showing knowledge are not always incorporated into traditional classrooms, but are an essential aspect of Project Based Learning.
ContributorsDick, Jordan Jamison (Author) / Greenhow, Tracy (Thesis director) / Hart Barnett, Juliet (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133012-Thumbnail Image.png
Description
As a member of the National Academy of Engineering’s Grand Challenge Scholars Program (GCSP) and the new Next Generation Service Corps (NGSC), I began this project interested in investigating the benefits and outcomes of these programs on my development throughout my undergraduate experience. Since interdisciplinarity is a core component of

As a member of the National Academy of Engineering’s Grand Challenge Scholars Program (GCSP) and the new Next Generation Service Corps (NGSC), I began this project interested in investigating the benefits and outcomes of these programs on my development throughout my undergraduate experience. Since interdisciplinarity is a core component of both programs, my thesis focused on the development and analysis of a survey to measure the interdisciplinary competence of undergraduate students in various programs and majors throughout ASU. In order to develop the survey items, we adapted questions by Lattuca, et al, which only analyzed the interdisciplinary competence of engineering students. Based on our responses, the quantitative data surfaced some interesting discrepancies between students in engineering and non-engineering majors. Broadly, the data also showed that students in GCSP and NGSC have higher interdisciplinary competence, implying there may be some benefits to both. Additionally, a preliminary theme analysis of the qualitative data seems to demonstrate that students appreciate a wide variety of opportunities to be exposed to disciplines outside of their primary major, and programs such as GCSP and NGSC which highlight interdisciplinarity expose students to opportunities they otherwise wouldn’t have known about. In the future, I would recommend evaluating the impact of students’ motivations for joining each program and examining the possible implications on their interdisciplinary competence. There are other outcomes that weren’t examined as part of this study, so it may also be interesting for future researchers to investigate other components of each program like the impacts of service learning or entrepreneurial experiences.
ContributorsChen, Diana Karen (Author) / Ganesh, Tirupalavanam (Thesis director) / Trowbridge, Amy (Committee member) / Watts College of Public Service & Community Solut (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132171-Thumbnail Image.png
Description
This project outlines the research-based strategies that teachers can implement into their classrooms to create and improve upon teacher-students relationships. The project begins by examining the positive effects of having strong teacher-student relationships. The thesis then moves to discuss the existing literature on specific strategies that teachers can

This project outlines the research-based strategies that teachers can implement into their classrooms to create and improve upon teacher-students relationships. The project begins by examining the positive effects of having strong teacher-student relationships. The thesis then moves to discuss the existing literature on specific strategies that teachers can implement into their classrooms. This literature is then categorized into six broad categories that summarizes the specific strategies. This information is compiled and portrayed on a website that is shown in the word document. The website serves as both a tool and a collaborative domain for teachers to learn about strategies they can use to build their relationships with their students, as well as share strategies or documents they use in their classroom to form meaningful relationships.
ContributorsMiller, Kayla Camille (Co-author) / Miller, Kayla (Co-author) / Hart Barnett, Juliet (Thesis director) / Farr, Wendy (Committee member) / Division of Teacher Preparation (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133484-Thumbnail Image.png
Description
In modern society, computer science (CS) professionals are necessary in the workforce. A growing number of fields and disciplines require the analytical and programming skills that come from a CS education. Despite the growing demand for programmers, the dropout rate within undergraduate CS programs remains high. In an effort to

In modern society, computer science (CS) professionals are necessary in the workforce. A growing number of fields and disciplines require the analytical and programming skills that come from a CS education. Despite the growing demand for programmers, the dropout rate within undergraduate CS programs remains high. In an effort to improve retention and make CS more accessible, I prototyped a mobile application that will help students through the principal deterrents that students face in their undergraduate years. Utilizing survey responses from 51 peers I determined the core courses and concepts within the CS curriculum that provoked the most concern to select the topics covered in the mobile application. The results show that the major barrier courses are CSE 310: Data Structures and Algorithms, CSE 340: Principles of Programming Languages, and CSE 355: Introduction to Theoretical Computer Science. Also using interviews and market research, I went through an iterative design process until I arrived at my final prototype that provides users a visual timeline of their program, examples for each individual topic, the ability to interact with other users, and create quizzes covering content they learned. This prototype is intended to lead to a fully developed application that will prepare and encourage students to further their professional careers in CS.
ContributorsRoldan, Jorge (Author) / Ganesh, Tirupalavanam (Thesis director) / Trowbridge, Amy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135117-Thumbnail Image.png
Description
Students with autism spectrum disorders (ASD) are increasingly included in general education and are expected to access core content, including science. Development of science content knowledge, scientific literacy, and scientific thinking are areas emphasized in legislation as well as the National Science Education Standards (NSES) as critical for all students.

Students with autism spectrum disorders (ASD) are increasingly included in general education and are expected to access core content, including science. Development of science content knowledge, scientific literacy, and scientific thinking are areas emphasized in legislation as well as the National Science Education Standards (NSES) as critical for all students. However, participation in science inquiry and discourse is often challenging for students with ASD given their difficulties with communication. Moreover, evidence on teaching academic content, such as science, to students with disabilities is limited. This comprehensive literature review synthesized ten studies of science intervention strategies for students with ASD. Findings suggest that students struggle with obtaining and retaining the background knowledge and strenuous vocabulary necessary to be successful with science content. Though studies related to instructional interventions in science for students with ASD are limited, these students can benefit from direct instruction through the implementation of supplementary materials such as e-texts, graphic organizers, and scripted lessons. Although there is not much research that supports inquiry-based practices, these interventions engage and assist students in the science curriculum by providing hands-on explorations with the material. Evidence-based practices for interventions in science for students with ASD have focused on direct instruction and inquiry-based practices. Direct instruction elicits explicit strategies in delivering science content concretely and directly. Many direct instruction approaches deal with the incorporation of visual supports and supplementary material to guide in student retention and access of complex ideas and terminology. Through direct instruction, the teacher facilitates and leads instruction to benefit the acquisition of science background knowledge. Contrastingly, inquiry-based practices encourage independent learning and hands-on explorations. While science is frequently inquiry-based in the general education setting, the communication challenges for students with ASD may contribute to difficulties with interactions and collaborations among peers within an inquiry lesson. Future implications include the need for additional, empirically-supported interventions in science for students with ASD and the need to target more inquiry-based science interventions for this population.
ContributorsFrankel, Ashleigh Jeanne (Author) / Barnett, Juliet (Thesis director) / Farr, Wendy (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
165131-Thumbnail Image.png
Description
A case study using Bate Guide to Physical Examination and History Taking to look at gender and racial biases in medical school textbooks. 5 chapters were looked at specific based on their racial and gender themes present in the images in the chapters. Data from these chapters demonstrate the medical

A case study using Bate Guide to Physical Examination and History Taking to look at gender and racial biases in medical school textbooks. 5 chapters were looked at specific based on their racial and gender themes present in the images in the chapters. Data from these chapters demonstrate the medical field as beneficial for white and male patients, while women and patients of racial minorities are underrepresented. This underrepresentation impacts future medical care, where these patients are dying as a result of this underdeveloped material.
Created2022-05
165567-Thumbnail Image.png
Description

Theories about the human origin in evolution and religion are fundamentally countering beliefs that are still debated to this day. This study continues to explore this relationship in the college population at a public university with the intention of targeting a diverse religious population. This research hopes to answer the

Theories about the human origin in evolution and religion are fundamentally countering beliefs that are still debated to this day. This study continues to explore this relationship in the college population at a public university with the intention of targeting a diverse religious population. This research hopes to answer the question: does having greater literacy in evolution lead to a noninterventionist perspective on evolution? The prediction is that evidence of increased evolution comprehension will influence students to have a more agnostic, or noninterventionist, view on evolution. An evolution class was given a survey that had two parts broken into demographic and evolution sections with one question that asks about compatibility between evolution and religion. This was given twice in a single semester to track the growth of evolution knowledge and any other differences. There were 265 students in the initial survey, but only 223 responses in the post-survey. The compatibility question had 8 statements that range from creationist to atheistic perspectives and was divided into two sides: interventionist (divine involvement) and noninterventionist (deity may be present but does not intervene). More than 70% of the class had a noninterventionist perspective on evolution despite the Christian categories being the second largest group students identified with after agnostic. The agnostic statement was the top choice followed by the atheistic answer on the noninterventionist side. Lastly, there was some growth of evolution knowledge for each religious category in the evolution section but is not significant for interpretation. Based on the collected data, it is not sufficient to answer the question and requires more data collection via a longitudinal study.

ContributorsLam, Monica (Author) / Kappes, Janelle (Thesis director) / Sterner, Beckett (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / School of Life Sciences (Contributor)
Created2022-05
Description

A deep dive on digital education solutions in the current and post-COVID education industry. Specific attention was given Interactive Flat Panel Display solutions in K-12 and higher education classrooms.

ContributorsHauck, Tanner (Co-author) / Morales, Herwin (Co-author) / Phillips, Maya (Co-author) / Koroli, Eri (Co-author) / Simonson, Mark (Thesis director) / Rakosi, Rock (Committee member) / Department of Finance (Contributor) / Department of Management and Entrepreneurship (Contributor) / The Design School (Contributor) / Economics Program in CLAS (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description
My Barrett Honors Thesis Paper synthesizes three components of my Thesis Project, which demonstrates the process of developing strong research from the beginning stage of investigation of a problem to implementation of an intervention to address that problem. Specifically, I engaged in research on the topic of mathematics and students

My Barrett Honors Thesis Paper synthesizes three components of my Thesis Project, which demonstrates the process of developing strong research from the beginning stage of investigation of a problem to implementation of an intervention to address that problem. Specifically, I engaged in research on the topic of mathematics and students with autism spectrum disorders (ASD). My review of the literature demonstrated a current dearth in the knowledge on effective interventions in math for this population of students. As part of my project, I developed and implemented an intervention to address the problem and help improve the knowledge base in the fields of autism and mathematics. Through the initial research process it was determined that students with autism spectrum disorders are being included more frequently in the general educational setting, and are therefore increasingly expected to access and master core curricular content, including mathematics. However, mathematics often presents challenges to students with ASD. Therefore, the first part of my Thesis Project is a comprehensive literature review that synthesized eleven studies of mathematics intervention strategies for students with ASD. Researching the current literature base for mathematics interventions that have been implemented with students with ASD and finding only eleven studies that met the inclusionary criteria led to the writing of the second part of my Thesis Project. In this second portion, I present how three research-based practices for students with autism, self-management, visual supports, and peer-mediated instruction, can be implemented in the context of teaching a higher-level mathematics skill, algebraic problem solving, specifically to students with ASD. By employing such strategies, teachers can assist their students with ASD to benefit more fully from mathematics interventions, which in turn may help them strengthen their mathematics skills, increase independence when completing problems, and use acquired skills in community or other applied settings. As part of the second portion of my Thesis Project, I developed a visual support strategy called COSMIC (a mnemonic device to guide learners through the steps of algebraic problem solving) to help aid students with ASD when solving simple linear equations. With the goal of contributing to the current research base of mathematics interventions that can support students with ASD, for the final part of Thesis Project I worked with a local middle school teacher to assist her in implementing our COSMIC intervention with her student with ASD. Results indicated the student improved in his algebraic problem solving skills, which suggests additional interventions with students with ASD to be recommended as part of future research.
ContributorsCleary, Shannon Taylor (Author) / Barnett, Juliet (Thesis director) / Farr, Wendy (Committee member) / Department of Finance (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12