Matching Items (26)
Filtering by

Clear all filters

135380-Thumbnail Image.png
Description
Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide

Bioscience High School, a small magnet high school located in Downtown Phoenix and a STEAM (Science, Technology, Engineering, Arts, Math) focused school, has been pushing to establish a computer science curriculum for all of their students from freshman to senior year. The school's Mision (Mission and Vision) is to: "..provide a rigorous, collaborative, and relevant academic program emphasizing an innovative, problem-based curriculum that develops literacy in the sciences, mathematics, and the arts, thus cultivating critical thinkers, creative problem-solvers, and compassionate citizens, who are able to thrive in our increasingly complex and technological communities." Computational thinking is an important part in developing a future problem solver Bioscience High School is looking to produce. Bioscience High School is unique in the fact that every student has a computer available for him or her to use. Therefore, it makes complete sense for the school to add computer science to their curriculum because one of the school's goals is to be able to utilize their resources to their full potential. However, the school's attempt at computer science integration falls short due to the lack of expertise amongst the math and science teachers. The lack of training and support has postponed the development of the program and they are desperately in need of someone with expertise in the field to help reboot the program. As a result, I've decided to create a course that is focused on teaching students the concepts of computational thinking and its application through Scratch and Arduino programming.
ContributorsLiu, Deming (Author) / Meuth, Ryan (Thesis director) / Nakamura, Mutsumi (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136701-Thumbnail Image.png
Description
This thesis investigates the environment of support for reclassified English Language Learners (RCELLs) in Arizona schools. Arizona English Language Learner (ELL) policy and pedagogy have been the subjects of research nationwide; many studies demonstrate that ELLs struggle before, during and after participating in Arizona ELL programs (Lillie et al. 2012;

This thesis investigates the environment of support for reclassified English Language Learners (RCELLs) in Arizona schools. Arizona English Language Learner (ELL) policy and pedagogy have been the subjects of research nationwide; many studies demonstrate that ELLs struggle before, during and after participating in Arizona ELL programs (Lillie et al. 2012; Roa 2012; Garcia, Lawton & de Figuieredo 2012; Office of Civil Rights 2012). Despite evidence that the achievement gap between RCELLs and mainstream students is not closing, little information is available about additional language support that RCELLs might receive in mainstream classrooms. This thesis addresses that void of information through: 1) A literature review of the framework of RCELL support, as outlined by the Arizona Department of Education and relevant studies, and 2) a study of teacher and principal opinion about support components for RCELLs and whether such support is adequate. Study findings present that teachers and principals generally believe RCELLs are well-supported, in terms of both the availability and quality of study-defined support components. Yet there is only weak consensus among teachers that support components are adequate. Additionally, teachers' knowledgeability related to important RCELL support components is low, undermining the reliability of teacher responses. The disconnect between participants' optimistic perceptions of support and the external evidence of low RCELL achievement is rationalized by two conjectures. The first is that teachers are not knowledgeable about RCELL support components and cannot accurately gauge the quality of such support. The second is that existing support components are effective at assisting RCELLs with English learning but are not sufficient to close RCELL academic content achievement gaps.
ContributorsKelly, Cary Shepherd (Author) / Garcia, David (Thesis director) / Garcia, Eugene (Committee member) / Seleznow, Steven (Committee member) / Barrett, The Honors College (Contributor) / Department of Economics (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-12
135834-Thumbnail Image.png
Description
There is still a major underrepresentation of females in STEM fields, with many girls beginning to lose interest as early as middle school. This is due to a variety of factors including lack of role models, stereotypes, ineffective teaching methods, and peer influence. A popular way to increase female interest

There is still a major underrepresentation of females in STEM fields, with many girls beginning to lose interest as early as middle school. This is due to a variety of factors including lack of role models, stereotypes, ineffective teaching methods, and peer influence. A popular way to increase female interest is through day camps and other programs where girls complete a variety of activities related to science and engineering. These activities are usually designed around problem-based learning, a student-lead approach to teaching that requires students to work collaboratively and use background knowledge to solve some sort of given problem. In this project, a day camp for middle school girls was created and implemented to increase student interest in STEM through three problem-based learning activities. By analyzing survey data, it was concluded that the camp was successful in increasing interest and changing participants' attitudes towards science. This approach to learning could be applied to other subject areas, including mathematics, to increase the interest of both male and female students at the secondary level.
ContributorsVitale, Nathalie Maria (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137230-Thumbnail Image.png
Description
The specific focus of the curriculum guide is to encourage inquiry and exploration of sustainability with middle school students. Children need to be explicitly taught how to analyze findings, how to work together, and teachers need to begin to lay the foundation of finding ideal solutions that best serve all

The specific focus of the curriculum guide is to encourage inquiry and exploration of sustainability with middle school students. Children need to be explicitly taught how to analyze findings, how to work together, and teachers need to begin to lay the foundation of finding ideal solutions that best serve all people. The sooner that we introduce our students to these concepts in conjunction with science concepts the better prepared they will be to face the upcoming challenges and the better developed their scientific literacy.
ContributorsSibley, Amanda Marie (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Kurz, Terri (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2014-05
137409-Thumbnail Image.png
Description
Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to

Electromyography (EMG) and Electroencephalography (EEG) are techniques used to detect electrical activity produced by the human body. EMG detects electrical activity in the skeletal muscles, while EEG detects electrical activity from the scalp. The purpose of this study is to capture different types of EMG and EEG signals and to determine if the signals can be distinguished between each other and processed into output signals to trigger events in prosthetics. Results from the study suggest that the PSD estimates can be used to compare signals that have significant differences such as the wrist, scalp, and fingers, but it cannot fully distinguish between signals that are closely related, such as two different fingers. The signals that were identified were able to be translated into the physical output simulated on the Arduino circuit.
ContributorsJanis, William Edward (Author) / LaBelle, Jeffrey (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-12
137370-Thumbnail Image.png
Description
Experiential learning is the process of gaining new information by participating in some sort of experience. One way this can occur inside the classroom, as in the inquiry model or problem-based learning. It can also occur outside of the classroom, as in outdoor education or field trips. Recently, virtual experiential

Experiential learning is the process of gaining new information by participating in some sort of experience. One way this can occur inside the classroom, as in the inquiry model or problem-based learning. It can also occur outside of the classroom, as in outdoor education or field trips. Recently, virtual experiential learning opportunities have surfaced, including virtual field trips, experiments, and manipulatives. This project aims to define experiential learning, including examples in every context. Then, it describes current elementary school teachers' perceptions of experiential learning via survey results. The final product also includes an Appendix which is made up of experiential learning lesson plans for each context.
ContributorsMccoy, Maddilyn (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Barrett, The Honors College (Contributor) / Division of Teacher Preparation (Contributor)
Created2013-12
136902-Thumbnail Image.png
DescriptionThis project largely focuses on the Latino population and how Hispanic parents should become more involved with their student's education in order to have them prosper in today's society.
ContributorsSanchez Ruiz, Dorian Nazaret (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Barrett, The Honors College (Contributor) / School of Politics and Global Studies (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
132904-Thumbnail Image.png
Description
This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis

This thesis is explaining the background, methods, discussions, and future work of developing a low-budget, variable-length, Arduino-based robotics unit for a 5th-7th grade classroom. The main motivation for the Thesis came from self-motivation and a lack of K-12th grade teachers’ teaching robotics. The end goal of the Thesis would be to teach primary school teachers how to teach robotics in the hopes that it would be taught in their classrooms. There have been many similar robotics or Arduino-based curricula that do not fit the preferred requirement for this thesis but do provide some level of guidance for future development. The method of the Thesis came in four main phases: 1) setup, 2) pre-unit phase, 3) unit phase, and 4) post unit phase. The setup focused primarily on making a timeline and researching what had already been done. The pre-unit phase focused primarily on the development of a new lesson plan along with a new robot design. The unit phase was primarily focused around how the teacher was assisted from a distance. Lastly, the post unit phase was when feedback was received from the teacher and the robots were inventoried to determine if, and what, damage occurred. There are many ways in which the lesson plan and robot design can be improved. Those improvements are the basis for a potential follow-up master’s thesis following the provided timeline.
ContributorsLerner, Jonah Benjamin (Author) / Carberry, Adam (Thesis director) / Walters, Molina (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133499-Thumbnail Image.png
Description
With growing levels of income inequality in the United States, it remains as important as ever to ensure indispensable public services are readily available to all members of society. This paper investigates four forms of public services (schools, libraries, fire stations, and police stations), first by researching the background of

With growing levels of income inequality in the United States, it remains as important as ever to ensure indispensable public services are readily available to all members of society. This paper investigates four forms of public services (schools, libraries, fire stations, and police stations), first by researching the background of these services and their relation to poverty, and then by conducting geospatial and regression analysis. The author uses Esri's ArcGIS Pro software to quantify the proximity to public services from urban American neighborhoods (census tracts in the cities of Phoenix and Chicago). Afterwards, the measures indicating proximity are compared to the socioeconomic statuses of neighborhoods using regression analysis. The results indicate that pure proximity to these four services is not necessarily correlated to socioeconomic status. While the paper does uncover some correlations, such as a relationship between school quality and socioeconomic status, the majority of the findings negate the author's hypothesis and show that, in Phoenix and Chicago, there is not much discrepancy between neighborhoods and the extent to which they are able to access vital government-funded services.
ContributorsNorbury, Adam Charles (Author) / Simon, Alan (Thesis director) / Simon, Phil (Committee member) / Department of Information Systems (Contributor) / Department of English (Contributor) / Department of Economics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134014-Thumbnail Image.png
Description
This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly incorporate science, technology, engineering, and math. Due to the increasing

This project examined the need for Science, Technology, Engineering, and Math (STEM) activities within a specific modality (centers) and their potential influence on elementary students with a particular emphasis on gender. STEM is an interdisciplinary curriculum that seeks to seamlessly incorporate science, technology, engineering, and math. Due to the increasing demand for STEM professions and proficiency within each aspect, the education system and individual educators require lessons and modalities that motivate learning in each of these areas. Administrators and teachers need creative ways to provide effective STEM implementation. Currently, the education system as a whole lacks creative and motivating material for these four domains. Not only this, but there has been a misunderstanding in regard to what effective STEM implementation entails, as well as a dearth of classroom ready lessons for educators. As a result, this thesis project developed a way to implement STEM through the use of learning centers. Learning centers are defined as designated areas within a classroom that allow easy access to a variety of learning materials. Within these centers are activities that reinforce concepts by using inquiry-based learning. Learning centers are effective in developing additional concepts or providing students with a greater breadth of knowledge on a concept. This thesis project developed three STEM learning center activity boxes and two STEM learning center outlines. Creating effective STEM learning centers and outlines was a multistep process. The first step was to develop a 3E lesson plan for each activity. Once the lesson plans were revised and complete, the creation of the three activity boxes was next. To create the activity boxes, all the required materials and worksheets were gathered and printed. From there, the next step was to implement the learning centers in a classroom to observe the results and propose any modifications. Afterwards, a reflection detailing the results and modifications was made. In the end, the goal of this project was to develop easily implemented STEM activities for my future classroom. Coming up with a creative way to get kids curious and excited about STEM is key in building STEM awareness. Not only did my project create STEM activities I can implement, but it also allowed me the opportunity to share my activities with other teachers. As a result, influencing the spread of STEM amongst future and current teachers.
ContributorsSchott, Nicole Elizabeth (Author) / Walters, Molina (Thesis director) / Oliver, Jill (Committee member) / Division of Teacher Preparation (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05