Matching Items (23)
Filtering by

Clear all filters

133340-Thumbnail Image.png
Description
For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today,

For as long as humans have been working, they have been looking for ways to get that work done better, faster, and more efficient. Over the course of human history, mankind has created innumerable spectacular inventions, all with the goal of making the economy and daily life more efficient. Today, innovations and technological advancements are happening at a pace like never seen before, and technology like automation and artificial intelligence are poised to once again fundamentally alter the way people live and work in society. Whether society is prepared or not, robots are coming to replace human labor, and they are coming fast. In many areas artificial intelligence has disrupted entire industries of the economy. As people continue to make advancements in artificial intelligence, more industries will be disturbed, more jobs will be lost, and entirely new industries and professions will be created in their wake. The future of the economy and society will be determined by how humans adapt to the rapid innovations that are taking place every single day. In this paper I will examine the extent to which automation will take the place of human labor in the future, project the potential effect of automation to future unemployment, and what individuals and society will need to do to adapt to keep pace with rapidly advancing technology. I will also look at the history of automation in the economy. For centuries humans have been advancing technology to make their everyday work more productive and efficient, and for centuries this has forced humans to adapt to the modern technology through things like training and education. The thesis will additionally examine the ways in which the U.S. education system will have to adapt to meet the demands of the advancing economy, and how job retraining programs must be modernized to prepare workers for the changing economy.
ContributorsCunningham, Reed P. (Author) / DeSerpa, Allan (Thesis director) / Haglin, Brett (Committee member) / School of International Letters and Cultures (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135828-Thumbnail Image.png
Description
"Improving Life Outcomes for Children in Arizona: Educational Social Impact Bond" is a creative project that is structured as a pitch to the Arizona Department of Education to consider social impact bonds as a way to fund pilot education programs. The pitch begins with a brief overview of the umbrella

"Improving Life Outcomes for Children in Arizona: Educational Social Impact Bond" is a creative project that is structured as a pitch to the Arizona Department of Education to consider social impact bonds as a way to fund pilot education programs. The pitch begins with a brief overview of the umbrella of impact investing, and then a focus on social impact bonds, an area of impact investing. A profile of Arizona's current educational rankings along with statistics are then presented, highlighting the need for an educational social impact bond to help increase achievement. The pitch then starts to focus particularly on high school drop outs and how by funding early childhood education the chances of a child graduating high school increase. An overview of existing early education social impact bonds that are enacted are then presented, followed by a possible structure for an early education social impact bond in Arizona. An analysis of the possible lifetime cost savings of investing in early childhood education are then presented, that are as a result of decreasing the amount of high school drop outs. Lastly, is a brief side-by-side comparison of the Arizona structure to the precedent social impact bonds.
ContributorsRodriguez, Karina (Author) / Simonson, Mark (Thesis director) / Trujillo, Gary (Committee member) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135856-Thumbnail Image.png
Description
The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In

The flipped classroom is a teaching method that flips the activities done in and out of class, i.e., concepts are learned out of class and problems are worked in class under the supervision of the instructor. Studies have indicated several benefits of the FC, including improved performance and engagement. In the past years, further studies have investigated the benefits of FC in statics, dynamics, and mechanics of materials courses and indicate similar performance benefits. However, these studies address a need for additional studies to validate their results due to the short length of their research or small classroom size. In addition, many of these studies do not measure student attitudes, such as self-efficacy, or the difference in time spent out of class on coursework. The objective of this research is to determine the effectiveness of the flipped classroom system (FC) in comparison to the traditional classroom system (TC) in a large mechanics of materials course. Specifically, it aims to measure student performance, student self-efficacy, student attitudes on lecture quality, motivation, attendance, hours spent out of class, practice, and support, and difference in impact between high, middle, and low achieving students. In order to accomplish this, three undergraduate mechanics of materials courses were analyzed during the spring 2015 semester. One FC section served as the experimental group (92 students), while the two TC sections served as the control group (125 students). To analyze student self-efficacy and attitudes, a survey instrument was designed to measure 18 variables and was administered at the end of the semester. Standardized core outcomes were compared between groups to analyze performance. This paper presents the specific course framework used in this FC, detailed results of the quantitative and qualitative analysis, and discussion of strengths and weaknesses. Overall, an overwhelming majority of students were satisfied with FC and would like more of their classes taught using FC. Strengths of this teaching method include greater confidence, better focus, higher satisfaction with practice in class and assistance received from instructors and peers, more freedom to express ideas and questions in class, and less time required outside of class for coursework. Results also suggest that this method has a greater positive impact on high and low achieving students and leads to higher performance. The criticisms made by students focused on lecture videos to have more worked examples. Overall, results suggest that FC is more effective than TC in a large mechanics of materials course.
ContributorsLee, Andrew Ryan (Author) / Zhu, Haolin (Thesis director) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137391-Thumbnail Image.png
Description
The purpose of this thesis is to understand peer-to-peer study habits at Arizona State University, and provide recommendations for improving these habits through online integration. This was done by researching current peer-to-peer collaboration literature, and analyzing online integration efforts. Interviews of Arizona State University students were carried out in order

The purpose of this thesis is to understand peer-to-peer study habits at Arizona State University, and provide recommendations for improving these habits through online integration. This was done by researching current peer-to-peer collaboration literature, and analyzing online integration efforts. Interviews of Arizona State University students were carried out in order to discover specific insights on study patterns at this university. The scope of this research study was further limited to freshman and sophomore engineering, mathematics, and science majors in order to mitigate the impacts of external factors. The background research and study illuminated various flaws in existing peer-to-peer collaboration tools and methods. These weaknesses were then used to design two online tools that would be incorporated into a student resource dashboard. The first tool, called "Ask a Peer", provides a question and answer forum for students. This tool differs from existing products because it provides a mobile platform for students to receive reputable and immediate responses from their classmates. The second tool, "Study Buddy Finder", can be used by students to form study partnerships. This tool is beneficial because it displays information that is essential to students deciding to work together. The thesis provides detailed designs for both modules, and provides the foundation for implementation.
ContributorsPatel, Niraj (Author) / Balasooriya, Janaka (Thesis director) / Eaton, John (Committee member) / Walker, Erin (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor)
Created2013-12
137439-Thumbnail Image.png
Description
Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative

Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative distribution system to inspire and empower people in Bangladesh and across the world. To start this process, we are working with the Rahima Hoque Girls' school in the rural area of Raipura, Bangladesh to give girls access to clean water where they spend the most time. Through our assessment trip in May 2012, we were able to acquire technical data, community input, and partnerships necessary to move our project forward. Additionally, we realized that in many cases, including the Rahima Hoque school, water problems are not caused by a lack of technology, but rather a lack of utilization and maintenance long-term. To remedy this, 33 Buckets has identified a local filter to have installed at the school, and has designed a small-scale business focused on selling clean water in bulk to the surrounding community. Our price point and association with the Rahima Hoque Girls' school makes our solution sustainable. Plus, with the success of our first site, we see the potential to scale. We already have five nearby schools interested in working to implement similar water projects, and with over 100,000 schools in Bangladesh, many of which lack access to the right water systems, we have a huge opportunity to impact millions of lives. This thesis project describes our journey through this process. First, an introduction to our work prior to the assessment trip and through the ASU EPICS program is given. Second, we include quantitative and qualitative details regarding our May 2012 assessment trip to the Rahima Hoque school and Dhaka. Third, we recount some of the experiences we were able to participate in following the trip to Bangladesh, including the Dell Social Innovation Challenge. Fourth, we examine the technical filtration methods, business model development, and educational materials that will be used to implement our solution this summer. Finally, we include an Appendix with a variety of social venture competitions and applications that we have submitted over the past two years, in addition to other supplementary materials. These are excellent examples of our diligence and provide unique insight into the growth of our project.
ContributorsStrong, Paul Andrew (Co-author) / Shah, Pankti (Co-author) / Huerta, Mark (Co-author) / Henderson, Mark (Thesis director) / El Asmar, Mounir (Committee member) / LaBelle, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137184-Thumbnail Image.png
Description
The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials

The focus of education in the classroom traditionally is one of fact memorization and recall. The teaching process of linear knowledge progression is not always in tune with the way that the human brain actually processes, conceptualizes, and comprehends concepts and information. In an introductory engineering class, focused on materials engineering and its related concepts, a system of lecture interventions has been put in place to increase concept comprehension by supplementing lecture units with various activities, from additional worksheets, explicit concept discussions, and most recently, YouTube videos showcasing specific concepts and situations. In an attempt to correct the lack of actual concept comprehension, these interventions seek to interact with the human mind in a way that capitalizes on its ability to process and interpret non-linear knowledge and information.

Using a concept test given prior to the lecture unit, and after, the difference in scores is used to recognize if the concepts presented have actually been comprehended. Used specifically in a lecture unit on solubility and solutions, the concept test tested student’s knowledge of supersaturated, saturated, and unsaturated solutions. With a visual identification and a written explanation, the student’s ability to identify and explain the three solutions was tested.

In order to determine the cause of the change in score from pre- to post-test, an analysis of the change in scores and the effects of question type and solution type was conducted. The significant results are as follows:
 The change in score from pre- to post-test was found to be significant, with the only difference between the two tests being the lecture unit and intervention
 From pre- to post-test, solution type had a significant effect on the score, with the unsaturated solution being the most easily recognized and explained solution type
 Students that felt that the YouTube videos greatly increased their concept comprehension, on average, performed better than their counterparts and also saw a greater increase their score from pre- to post-test
ContributorsLinich, Christopher Graham (Author) / Krause, Stephen (Thesis director) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137052-Thumbnail Image.png
Description
The purpose of this creative thesis project is to create the framework of an educational class package based off of a course offered at Arizona State University. The course chosen for this project is an honors course titled Deductive Logic: Leadership and Management Techniques and is taught by Dean Kashiwagi,

The purpose of this creative thesis project is to create the framework of an educational class package based off of a course offered at Arizona State University. The course chosen for this project is an honors course titled Deductive Logic: Leadership and Management Techniques and is taught by Dean Kashiwagi, PhD. The class package is designed to be published over an online platform so students and professors from various institutions can access the material. Currently the platform is in its final stages of development and is slated to go live on July of 2014. The future development of the package will be geared towards facilitating interdisciplinary collaboration between institutions based off of course concepts.
ContributorsGunnoe, Jake Alan (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Del E. Webb Construction (Contributor)
Created2014-05
134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
132899-Thumbnail Image.png
Description
For my thesis, I chose to write a children’s book on financial education. The purpose of the book is to introduce financial terms such as savings, loans, and opportunity cost into a child’s life. The goal of the book is to inspire young individuals to start having open discussions about

For my thesis, I chose to write a children’s book on financial education. The purpose of the book is to introduce financial terms such as savings, loans, and opportunity cost into a child’s life. The goal of the book is to inspire young individuals to start having open discussions about their finances and what these terms mean as well as how it applies to their daily lives.

The inspiration of the book came from my personal upbringing. I was born and raised in Mesa, Arizona, where I would see title loans businesses in every street corner. Many close family friends grew a dependency on these loans. As I grew older, I became aware of the long-term effects these businesses had on these families and I became inspired to make a change.

My book is meant to introduce simple financial terms into a child’s life with the hopes that they will begin to converse with family and friends about these terms. My book specifically incorporates the terms: loans, opportunity costs, savings, and affordability. These four topics were chosen through surveying a high school class by gathering information such as what they know, how much they know, and what they would like to learn more about. The intended audience would be students reading at a 3rd grade reading level. This grade level is ideal for my book based off information found on the Arizona Department of Education’s website. Final revisions were done with the help of my committee as well as through feedback received from children.

The book itself is 31 pages long with illustrations on every page. The illustrations consist of photographs and drawings. The drawings were purposely placed, roughly, and without color, on the photographs to symbolize the rough patches in life in yet a colorful world.

Proposition 1184 plays a major role in the future of my book. Proposition 1184 is
currently working its way through the Arizona legislature and would require all high school students to take a class on financial basics, replacing the current economics class requirement. I plan to continue working with Mesa Public Schools to get my book, or a similar project, incorporated into the Mesa Public Schools curriculum. I envision the book starting discussions related to financial topics which will in turn familiarize children with these terms’ definitions and begin the movement of financial education in Arizona.
ContributorsMorales, Irma Lucero (Author) / Desch, Tim (Thesis director) / Wolfe, Mindy (Committee member) / Department of Finance (Contributor) / Department of Supply Chain Management (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133460-Thumbnail Image.png
Description
English Learners (ELs) in mainstream classrooms must overcome additional language barriers to comprehend and master Common Core State Standards in mathematics. I will be working as a teacher after graduation who will provide content-based instruction to ELs in Spain and Phoenix, AZ. As someone who will be graduating with non-education

English Learners (ELs) in mainstream classrooms must overcome additional language barriers to comprehend and master Common Core State Standards in mathematics. I will be working as a teacher after graduation who will provide content-based instruction to ELs in Spain and Phoenix, AZ. As someone who will be graduating with non-education degrees but working in education, it is imperative that I understand the best methods to create a conducive learning environment for simultaneous L2 acquisition and content comprehension. After reviewing previous research, I identified multiple methods that assist ELs in simultaneously acquiring classroom content and improving English Language Proficiency (ELP). I have used these methods to construct three lesson plans that teach three mathematics standards and corresponding ELP standards for third-grade students in Arizona. I analyzed the methods that were used in my lesson plans and expanded upon how they will enhance ELP for ELs in my classroom. I have concluded my report by identifying some shifts in Common Core State Standards and the implications that these shifts have for ELs in mainstream classrooms.
ContributorsDavies, Alec G. (Author) / Silva, Alexandria (Thesis director) / Moses, Lindsey (Committee member) / School of Politics and Global Studies (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05