Matching Items (31)
Filtering by

Clear all filters

Description

Not enough students are earning bachelor’s degrees in Computer Science, which is shocking as computing jobs are growing by the thousands (Zampa, 2016). These jobs have high-paying salaries and are not going to fade from the future any time soon, that is why the falling rates of computer science graduates

Not enough students are earning bachelor’s degrees in Computer Science, which is shocking as computing jobs are growing by the thousands (Zampa, 2016). These jobs have high-paying salaries and are not going to fade from the future any time soon, that is why the falling rates of computer science graduates are alarming. The working hypothesis on why so few college students major in computer science is that most think that it is too hard to learn (Wang, 2017). But I believe the real reason lies in that computer science is not an educational subject that is taught before university, which is too late for most students because by ages 12 to 13 (about seventh to eighth grade) they have decided that computer science concepts are “too difficult” for them to learn (Learning, 2022). Implementing a computer science-based education at an earlier age can possibly circumvent this seen development where students begin to lose confidence and doubt their abilities to learn computer science. This can be done easily by integrating computer science into academic subjects that are already taught in elementary schools such as science, math, and language arts as computer science uses logic, syntax, and other skills that are broadly applicable. Thus, I have created a introductory lesson plan for an elementary school class that incorporates learning how to code with robotics to promote learning computer science principles and destigmatize that it is “too hard” to learn in university.

ContributorsWong, Erika (Author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
131996-Thumbnail Image.png
Description
Although many data visualization diagrams can be made accessible for individuals who are blind or visually impaired, they often do not present the information in a way that intuitively allows readers to easily discern patterns in the data. In particular, accessible node graphs tend to use speech to describe the

Although many data visualization diagrams can be made accessible for individuals who are blind or visually impaired, they often do not present the information in a way that intuitively allows readers to easily discern patterns in the data. In particular, accessible node graphs tend to use speech to describe the transitions between nodes. While the speech is easy to understand, readers can be overwhelmed by too much speech and may not be able to discern any structural patterns which occur in the graphs. Considering these limitations, this research seeks to find ways to better present transitions in node graphs.

This study aims to gain knowledge on how sequence patterns in node graphs can be perceived through speech and nonspeech audio. Users listened to short audio clips describing a sequence of transitions occurring in a node graph. User study results were evaluated based on accuracy and user feedback. Five common techniques were identified through the study, and the results will be used to help design a node graph tool to improve accessibility of node graph creation and exploration for individuals that are blind or visually impaired.
ContributorsDarmawaskita, Nicole (Author) / McDaniel, Troy (Thesis director) / Duarte, Bryan (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131249-Thumbnail Image.png
Description
Learning to code is a skill that is becoming increasing needed as technology advances, yet is absent in traditional education. This thesis aims to provide a resource for middle school teachers to introduce programming skills and concepts to their students over several lessons designed to fit within the constraints of

Learning to code is a skill that is becoming increasing needed as technology advances, yet is absent in traditional education. This thesis aims to provide a resource for middle school teachers to introduce programming skills and concepts to their students over several lessons designed to fit within the constraints of a standard class period. By targeting students in middle school, if they develop an interest, they will have enough time in middle or high school to prepare themselves for a degree in Computer Science or to complete a programming boot camp after they graduate high school. Additionally, middle school students are old enough to understand challenging programming concepts and work together to solve a programming challenge. The programming language and environment, VIPLE, will be used to teach the concepts in the lessons as it is a graphical programming language, which removes many of the common challenges faced by young students in learning to code, like dealing with syntax or remembering keywords for coding blocks.
ContributorsBelt, Emily (Author) / Chen, Yinong (Thesis director) / Miller, Cindy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131208-Thumbnail Image.png
Description
In this project, I investigated the impact of virtual reality on memory retention. The investigative approach to see the impact of virtual reality on memory retention, I utilized the memorization technique called the memory palace in a virtual reality environment. For the experiment, due to Covid-19, I was forced to

In this project, I investigated the impact of virtual reality on memory retention. The investigative approach to see the impact of virtual reality on memory retention, I utilized the memorization technique called the memory palace in a virtual reality environment. For the experiment, due to Covid-19, I was forced to be the only subject. To get effective data, I tested myself within randomly generated environments with a completely unique set of objects, both outside of a virtual reality environment and within one. First I conducted a set of 10 tests on myself by going through a virtual environment on my laptop and recalling as many objects I could within that environment. I recorded the accuracy of my own recollection as well as how long it took me to get through the data. Next I conducted a set of 10 tests on myself by going through the same virtual environment, but this time with an immersive virtual reality(VR) headset and a completely new set of objects. At the start of the project it was hypothesized that virtual reality would result in a higher memory retention rate versus simply going through the environment in a non-immersive environment. In the end, the results, albeit with a low test rate, leaned more toward showing the hypothesis to be true rather than not.
ContributorsDu, Michael Shan (Author) / Kobayashi, Yoshihiro (Thesis director) / McDaniel, Troy (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132671-Thumbnail Image.png
Description
While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large

While there are many existing systems which take natural language descriptions and use them to generate images or text, few systems exist to generate 3d renderings or environments based on natural language. Most of those systems are very limited in scope and require precise, predefined language to work, or large well tagged datasets for their models. In this project I attempt to apply concepts in NLP and procedural generation to a system which can generate a rough scene estimation of a natural language description in a 3d environment from a free use database of models. The primary objective of this system, rather than a completely accurate representation, is to generate a useful or interesting result. The use of such a system comes in assisting designers who utilize 3d scenes or environments for their work.
ContributorsHann, Jacob R. (Author) / Kobayashi, Yoshihiro (Thesis director) / Srivastava, Siddharth (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
130875-Thumbnail Image.png
Description
This project produced a dual-medium (traditional screen & virtual reality) virtual environment of Barnhardt Canyon, in Payson, Arizona. The project showcases two different approaches to developing a virtual environment with both being centered by 360 degree content. The virtual environment allows a user to explore the area in a much

This project produced a dual-medium (traditional screen & virtual reality) virtual environment of Barnhardt Canyon, in Payson, Arizona. The project showcases two different approaches to developing a virtual environment with both being centered by 360 degree content. The virtual environment allows a user to explore the area in a much more immersive way than offered by traditional media. Future uses of the project could include research on the educational efficacy of virtual reality content, or the project could be used as a teaching tool in geoscience classes.
ContributorsRuberto, James Richard (Author) / Semken, Steven (Thesis director) / Reynolds, Stephen (Committee member) / Proctor, Sian (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-12
166163-Thumbnail Image.png
Description

A Skunkworks project is the name given to a small team of individuals leading an innovative undertaking, and conducting research and development outside of the normal scope of an organization. With this concept in mind, our team of six individuals was tasked with finding and conceptualizing innovative solutions within varying

A Skunkworks project is the name given to a small team of individuals leading an innovative undertaking, and conducting research and development outside of the normal scope of an organization. With this concept in mind, our team of six individuals was tasked with finding and conceptualizing innovative solutions within varying business markets of interest. Our team started off with five markets that we identified issues in and were passionate about solving. These included Sports Engagement, Education, Student Debt, Digital Literacy, and Viral Health. From extensive research, trial and error, and endless conversations we settled on creating business models in two final areas: Student Debt and Viral Health. Our research in Student Debt led us to the discovery that the average Arizona State student, takes out $21,237 in loans for their four year degree and in the whole state of Arizona, a student takes on an average of $22,253. Our solution to this problem was to create a student financial app that served as an efficient debt tracker that provided important information about finances, investing, and student loan information. Additionally, our team also wanted the address the issue of sexually transmitted diseases, just a small scope of Viral Health, within Arizona State University. Our research led us to discover that 50% of people report not getting tested, and from this population most reported it was due to anxiety and financial issues. From our research the StayInformed app was created to provide students with better accessibility to both at-home and clinic testing services, and updated education on sexual health. With this project model we hope to increase the rate of students testing and allow students more agency over their sexual health. Although these two services are addressing very different markets, they both utilize forward thinking technology to create much needed solutions and better the lives of students.

ContributorsVanstrom, Zakyre (Author) / Ward, Hayley (Co-author) / Burry, Grace (Co-author) / Hart, Karsten (Co-author) / Mundy, Jacqueline (Co-author) / Schwingendorf, Jordan (Co-author) / Byrne, Jared (Thesis director) / O’Keefe, Kelly (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165433-Thumbnail Image.png
Description

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in

Augmented Reality (AR) especially when used with mobile devices enables the creation of applications that can help students in chemistry learn anything from basic to more advanced concepts. In Chemistry specifically, the 3D representation of molecules and chemical structures is of vital importance to students and yet when printed in 2D as on textbooks and lecture notes it can be quite hard to understand those vital 3D concepts. ARsome Chemistry is an app that aims to utilize AR to display complex and simple molecules in 3D to actively teach students these concepts through quizzes and other features. The ARsome chemistry app uses image target recognition to allow students to hand-draw or print line angle structures or chemical formulas of molecules and then scan those targets to get 3D representation of molecules. Students can use their fingers and the touch screen to zoom, rotate, and highlight different portions of the molecule to gain a better understanding of the molecule's 3D structure. The ARsome chemistry app also features the ability to utilize image recognition to allow students to quiz themselves on drawing line-angle structures and show it to the camera for the app to check their work. The ARsome chemistry app is an accessible and cost-effective study aid platform for students for on demand, interactive, 3D representations of complex molecules.

ContributorsEvans, Brandon (Author) / LiKamWa, Robert (Thesis director) / Johnson, Mina (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
164849-Thumbnail Image.png
Description

Machine learning is a rapidly growing field, with no doubt in part due to its countless applications to other fields, including pedagogy and the creation of computer-aided tutoring systems. To extend the functionality of FACT, an automated teaching assistant, we want to predict, using metadata produced by student activity, whether

Machine learning is a rapidly growing field, with no doubt in part due to its countless applications to other fields, including pedagogy and the creation of computer-aided tutoring systems. To extend the functionality of FACT, an automated teaching assistant, we want to predict, using metadata produced by student activity, whether a student is capable of fixing their own mistakes. Logs were collected from previous FACT trials with middle school math teachers and students. The data was converted to time series sequences for deep learning, and ordinary features were extracted for statistical machine learning. Ultimately, deep learning models attained an accuracy of 60%, while tree-based methods attained an accuracy of 65%, showing that some correlation, although small, exists between how a student fixes their mistakes and whether their correction is correct.

ContributorsZhou, David (Author) / VanLehn, Kurt (Thesis director) / Wetzel, Jon (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165912-Thumbnail Image.png
Description
The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to create and launch a new business. Initially, our team focused

The Founders lab is a year-long program that gives its students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to create and launch a new business. Initially, our team focused on creating a product that would provide those who have received basic genetic testing from services such as 23andMe with nutrition, exercise, and health/wellness educational resources. Over time, we transitioned our focus to creating a community forum that would also provide those resources to people who had not received basic genetic testing, but were still interested in accessing educational resources about the specific conditions that basic genetic testing services provide reports for. To accomplish this, we have produced a website that allows users to post content and interact with each other.
ContributorsUmana Fleck, David (Author) / Chapman, Isabella (Co-author) / Niu, Hardy (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05