Matching Items (5)
Filtering by

Clear all filters

137439-Thumbnail Image.png
Description
Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative

Bangladesh is facing one of the largest mass poisonings in human history with over 77 million people affected by contaminated water each and every day. Over the last few years, the 33 Buckets team has come together to help fulfill this clean water need through filtration, education, and an innovative distribution system to inspire and empower people in Bangladesh and across the world. To start this process, we are working with the Rahima Hoque Girls' school in the rural area of Raipura, Bangladesh to give girls access to clean water where they spend the most time. Through our assessment trip in May 2012, we were able to acquire technical data, community input, and partnerships necessary to move our project forward. Additionally, we realized that in many cases, including the Rahima Hoque school, water problems are not caused by a lack of technology, but rather a lack of utilization and maintenance long-term. To remedy this, 33 Buckets has identified a local filter to have installed at the school, and has designed a small-scale business focused on selling clean water in bulk to the surrounding community. Our price point and association with the Rahima Hoque Girls' school makes our solution sustainable. Plus, with the success of our first site, we see the potential to scale. We already have five nearby schools interested in working to implement similar water projects, and with over 100,000 schools in Bangladesh, many of which lack access to the right water systems, we have a huge opportunity to impact millions of lives. This thesis project describes our journey through this process. First, an introduction to our work prior to the assessment trip and through the ASU EPICS program is given. Second, we include quantitative and qualitative details regarding our May 2012 assessment trip to the Rahima Hoque school and Dhaka. Third, we recount some of the experiences we were able to participate in following the trip to Bangladesh, including the Dell Social Innovation Challenge. Fourth, we examine the technical filtration methods, business model development, and educational materials that will be used to implement our solution this summer. Finally, we include an Appendix with a variety of social venture competitions and applications that we have submitted over the past two years, in addition to other supplementary materials. These are excellent examples of our diligence and provide unique insight into the growth of our project.
ContributorsStrong, Paul Andrew (Co-author) / Shah, Pankti (Co-author) / Huerta, Mark (Co-author) / Henderson, Mark (Thesis director) / El Asmar, Mounir (Committee member) / LaBelle, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
Description
The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through,

The action/adventure game Grad School: HGH is the final, extended version of a BME Prototyping class project in which the goal was to produce a zombie-themed game that teaches biomedical engineering concepts. The gameplay provides fast paced, exciting, and mildly addicting rooms that the player must battle and survive through, followed by an engineering puzzle that must be solved in order to advance to the next room. The objective of this project was to introduce the core concepts of BME to prospective students, rather than attempt to teach an entire BME curriculum. Based on user testing at various phases in the project, we concluded that the gameplay was engaging enough to keep most users' interest through the educational puzzles, and the potential for expanding this project to reach an even greater audience is vast.
ContributorsNitescu, George (Co-author) / Medawar, Alexandre (Co-author) / Spano, Mark (Thesis director) / LaBelle, Jeffrey (Committee member) / Guiang, Kristoffer (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
153581-Thumbnail Image.png
Description
The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This information deficit fails to completely prepare clinicians for complex heart

The advent of medical imaging has enabled significant advances in pre-procedural planning, allowing cardiovascular anatomy to be visualized noninvasively before a procedure. However, absolute scale and tactile information are not conveyed in traditional pre-procedural planning based on images alone. This information deficit fails to completely prepare clinicians for complex heart repair, where surgeons must consider the varied presentations of cardiac morphology and malformations. Three-dimensional (3D) visualization and 3D printing provide a mechanism to construct patient-specific, scale models of cardiovascular anatomy that surgeons and interventionalists can examine prior to a procedure. In addition, the same patient-specific models provide a valuable resource for educating future medical professionals. Instead of looking at idealized images on a computer screen or pages from medical textbooks, medical students can review a life-like model of patient anatomy.



In cases where surgical repair is insufficient to return the heart to normal function, a patient may proceed to advanced heart failure, and a heart transplant may be required. Unfortunately, a finite number of available donor hearts are available. A mechanical circulatory support (MCS) device can be used to bridge the time between heart failure and reception of a donor heart. These MCS devices are typically constructed for the adult population. Accordingly, the size associated to the device is a limiting factor for small adults or pediatric patients who often have smaller thoracic measurements. While current eligibility criteria are based on correlative measurements, the aforementioned 3D visualization capabilities can be leveraged to accomplish patient-specific fit analysis.

The main objectives of the work presented in this dissertation were 1) to develop and evaluate an optimized process for 3D printing cardiovascular anatomy for surgical planning and medical education and 2) to develop and evaluate computational tools to assess MCS device fit in specific patients. The evaluations for objectives 1 and 2 were completed with a collection of qualitative and quantitative validations. These validations include case studies to illustrate meaningful, qualitative results as well as quantitative results from surgical outcomes. The latter results present the first quantitative supporting evidence, beyond anecdotal case studies, regarding the efficacy of 3D printing for pre-procedural planning; this data is suitable as pilot data for clinical trials. The products of this work were used to plan 200 cardiovascular procedures (including 79 cardiothoracic surgeries at Phoenix Children's Hospital), via 3D printed heart models and assess MCS device fit in 29 patients across 6 countries.
ContributorsRyan, Justin Robert (Author) / Frakes, David (Thesis advisor) / Collins, Daniel (Committee member) / LaBelle, Jeffrey (Committee member) / Pizziconi, Vincent (Committee member) / Pophal, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
137648-Thumbnail Image.png
Description
Camp Hope is an organization dedicated to motivating children in foster care to pursue higher education. In this paper, the organization's founder applies the engineering design process to the problems currently facing Arizona's foster care system. What emerges is Camp Hope (i.e. the "product") and in turn a model by

Camp Hope is an organization dedicated to motivating children in foster care to pursue higher education. In this paper, the organization's founder applies the engineering design process to the problems currently facing Arizona's foster care system. What emerges is Camp Hope (i.e. the "product") and in turn a model by which it can be promulgated throughout the Phoenix metropolitan area and abroad. Prototype camps held abroad in Mexico, and at local group homes in Tempe, Arizona verify the initial user inputs with 68% of campers reporting new academic interests in pre/post camp surveys. Future work includes continued fine-tuning of the model through continued Arizona camps, and longer-term surveys tracking the development of children who participate in the program.
ContributorsSaez, Neil Alexander (Author) / LaBelle, Jeffrey (Thesis director) / Pizziconi, Vincent (Committee member) / Fitzgerald, Charles A. (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05